Advertisement

Synthesis and Characterization of Asparaginase Bound Silver Nanocomposite Against Ovarian Cancer Cell Line A2780 and Lung Cancer Cell Line A549

  • G. Baskar
  • Garrick Bikku George
  • M. Chamundeeswari
Article

Abstract

Development of new strategies of drug delivery is essential for effective treatment of cancer. In the present work, nanobiocomposite of fungal asparaginase was produced by immobilizing with silver nanoparticles. Asparaginase bound silver nanoparticle has shown higher enzyme activity than crude asparaginase. The primary and secondary amine/amide functional groups were found responsible for binding of asparaginase to silver nanoparticles. The silver nanobiocomposite of asparaginase was found to have smooth surface and crystalline in nature. The size of the nanobiocomposites ranged from 60 to 80 nm. The cytotoxicity of silver nanobiocomposite of asparaginase was found to be higher than free asparaginase on ovarian cancer cell line. The silver nanobiocomposite of asparaginase showed better cytotoxicity against ovarian cancer cell line A2780 than lung cancer cell line A549. Thus the synthesized silver nanobiocomposite of asparaginase can be used as an effective anticancer agent against lung cancer.

Keywords

Nanobiocomposite Asparaginase Silver nanoparticle Cancer cells Anticancer activity Characterization 

Notes

Acknowledgments

This work was financially supported under the scheme Pilot Project Grant for Young Investigators in Cancer Biology (Sanction No. 6242-P96/RGCB/PMD/DBT/GBKR/2015) by Department of Biotechnology, Government of India.

References

  1. 1.
    S.L. Pal, U. Utpal Jana, P.K. Manna, G.P. Mohanta, R. Manavalan, J. Appl. Pharm. Sci. 1, 228–234 (2011)Google Scholar
  2. 2.
    S. Sortino, A. Mazzaglia, L. Monsu Scolaro, F. Marino Merlo, V. Valveri, M.T. Sciortino, Biomaterials 27, 4256–4265 (2006)CrossRefGoogle Scholar
  3. 3.
    J.W. Park, C.C. Benz, F.J. Martin, Semin. Oncol. 31, 196 (2004)CrossRefGoogle Scholar
  4. 4.
    S.S. Feng, L. Mu, K.Y. Win, G. Huang, Curr. Med. Chem. 11, 413–424 (2004)CrossRefGoogle Scholar
  5. 5.
    J. Sudimack, R.J. Lee, Adv. Drug Deliv. Rev. 41, 147–162 (2000)CrossRefGoogle Scholar
  6. 6.
    M.M. Yallapu, M. Jaggi, S.C. Chauhan, J. Ovarian Res 3, 19 (2010)CrossRefGoogle Scholar
  7. 7.
    K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Nanomedicine 6, 257–262 (2010)Google Scholar
  8. 8.
    S. Parveen, R. Misra, S.K. Sahoo, Nanomedicine 8, 147–166 (2012)Google Scholar
  9. 9.
    G.A. Craig, P.J. Allen, M.D. Mason, Methods Mol. Biol 624, 177–193 (2010)CrossRefGoogle Scholar
  10. 10.
    D. Kim, Y.Y. Jeong, S. Jon, ACS Nano 4, 3689–3696 (2010)CrossRefGoogle Scholar
  11. 11.
    R. Sinclair, H. Li, S. Madsen, H. Dai, Ultramicroscopy 34, 167–174 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Biddlestone-Thorpe, N. Marchi, K. Guo, C. Ghosh, D. Janigro, K. Valerie, H. Yang, Adv. Drug. Deliv. Rev. 64, 605–613 (2012)CrossRefGoogle Scholar
  13. 13.
    V.J. Mohanraj, Y. Chen, Trop. J. Pharm. Res. 5(1), 561–573 (2006)Google Scholar
  14. 14.
    S. Wohlfart, A.S. Khalansky, S. Gelperina, O. Maksimenko, C. Bernreuther, M. Glatzel, J. Kreuter, PLoS One 6, e19121 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Michaelis, M.M. Hoffmann, S. Dreis, E. Herbert, R.N. Alyautdin, M. Michaelis, J. Kreuter, K. Langer, J. Pharmacol. Exp. Ther. 317, 1246–1253 (2006)CrossRefGoogle Scholar
  16. 16.
    S.C. Steiniger, J. Kreuter, A.S. Khalansky, I.N. Skidan, A.I. Bobruskin, Z.S. Smirnova, S.E. Severin, R. Uhl, M. Kock, K.D. Geiger, S.E. Gelperina, Int. J. Cancer 109, 759–767 (2004)CrossRefGoogle Scholar
  17. 17.
    M.I. Sriram, S.B. Mani Kanth, K. Kalishwaralal, S. Gurunathan, Int. J. Nanomed. 5, 753–762 (2010)Google Scholar
  18. 18.
    A. Kantha Deivi, A. Lilly Baptista, A. Sathesh Kumar, M.A. Aarrthy, Int. J. Nanomed. 5, 1031–1041 (2015)Google Scholar
  19. 19.
    K. Balaji, K M Gothandam, Braz. Arch. Biol. Technol. 59, 1–8 (2016)Google Scholar
  20. 20.
    J. Saraniya Devi, B. Valentin Bhimba, Int. J. Biol. Ecol. Environ. Sci. 2, 17–25 (2013)Google Scholar
  21. 21.
    P. Visweswara Rao, N. Devi, K. Madhavi, S. Rahman, L.J. Wei, S.H. Gan, Oxid. Med. Cell Longev. 1–15 (2016)Google Scholar
  22. 22.
    R. Geetha Bai, K. Muthoosamy, F.N. Shipton, A. Pandikumar, P. Rameshkumar, N.M. Huang, S. Manickam, RSC Adv. 6, 36576–36587 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Mishra, H. Kumar, K. Tripathi, Dig. J. Nanomater. Bios. 3, 49–54 (2008)Google Scholar
  24. 24.
    M.I. Sriram, S. Barath Mani Kanth, K. Kalishwaralal, S. Gurunathan, Int. J. Nanomed. 5, 753–762 (2010)Google Scholar
  25. 25.
    M.M. Gasper, D. Blanco, M.M. Cruz, M.A. Alonso, J. Control. Release 52, 53–62 (1998)CrossRefGoogle Scholar
  26. 26.
    G. Baskar, J. Chandhuru, K. Sheraz Fahad, A. S. Praveen, M. Chamundeeswari, T. Muthukumar, J. Mater. Sci. Mater. Med. 26, 43 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Fang, C. Zhong, R. Mu, Chem. Phys. Lett. 401, 271–275 (2005)CrossRefGoogle Scholar
  28. 28.
    G. Baskar, S. Renganathan, Asia-Pac. J. Chem. Eng. 7, 212–220 (2012)CrossRefGoogle Scholar
  29. 29.
    J.C. Wriston Jr, T.O. Yellin, Adv. Enzymol. Relat. Areas Mol. Biol. 39, 185–248 (1973)Google Scholar
  30. 30.
    M. Bradford, Anal. Biochem. 72, 248–254 (1974)CrossRefGoogle Scholar
  31. 31.
    T. Mossman, J. Immunol. Methods 65, 55–63 (1983)CrossRefGoogle Scholar
  32. 32.
    O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.V. Kotko, J. Verdal, A.O. Pinchuk, J. Phys. 57, 266–277 (2012)Google Scholar
  33. 33.
    C. Liu, X. Yang, H. Yuan, Z. Zhou, D. Xiao, Sensors 7, 708–718 (2007)CrossRefGoogle Scholar
  34. 34.
    M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. Al Salhi, Nanoscale Res. Lett. 6, 434 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. Baskar
    • 1
  • Garrick Bikku George
    • 1
  • M. Chamundeeswari
    • 1
  1. 1.Department of BiotechnologySt. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations