Advertisement

Controlled Synthesis of Nanostructured CuInS2: Study of Mechanism and Its Application in Low-Cost Solar Cells

  • A. H. Cheshme Khavar
  • A. R. Mahjoub
  • H. Fakhri
Article

Abstract

Various morphologies of CuInS2 (CIS) nanostructures were successfully synthesized by an oxalic acid (OA), H2C2O4, assisted solvothermal treatment. FT-IR, XRD, scanning electron microscopy, gas-sorption measurements and diffuse transmittance spectroscopy were used to characterization of CIS nanostructures. The impact of thiourea and OA concentrations, reaction temperature and reaction time on the phase structure, morphology and optical properties are investigated. The formation process is discussed and a possible growth model is proposed. OA is found to play key role during the formation process of the CIS nanostructure. Dispersion of the final nanostructures in dimethylformamide solvent forms a viscous and stable ink which can be easily deposited onto substrates. CIS nanostructures inks were applied in a cadmium-free all solution-based CuInS2 superstrate-type solar cell devices with Glass/FTO/TiO2/In2S3/CIS/Carbon structure. All processes were vacuum- and selenization-free and were done under atmospheric condition. The optimum cell shows the short-circuit current density of 13.8 mA/cm2 and the power conversion efficiency of 2.07 %, respectively. Our study outlines a general strategy for using CuInS2 nanostructures for photovoltaic application.

Keywords

CuInS2 Nanostructures Solar cell Oxalic acid 

Notes

Acknowledgments

The financial support of this study, by Tarbiat modares university and Iranian Nanotechnology Initiative, is gratefully acknowledged. The authors gratefully acknowledge the contribution of Dr. Nima Taghavinia.

References

  1. 1.
    M. Ben Rabeh, N. Khedmi, M.A. Fodha, M. Kanzari, Energy Procedia 44, 52 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Klaer, J. Bruns, R. Henninger, K. Siemer, R. Klenk, K. Ellmer, D. Bräunig, Semicond. Sci. Technol. 13, 1456 (1998)CrossRefGoogle Scholar
  3. 3.
    H.J. Lewerenz, Sol. Energy Mater. Sol. Cells 83, 395 (2004)CrossRefGoogle Scholar
  4. 4.
    A. Tadjarodi, A. Cheshmekhavar, M. Imani, Appl. Surf. Sci. 263, 449 (2012)CrossRefGoogle Scholar
  5. 5.
    K.J. Plucinski, A.M. El-Naggar, N.S. AlZayed, A.A. Albassam, A.O. Fedorchu, D. Kulwas, I.V. Kityk, Mater. Sci. Semicond. 38, 184 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Al-Douri, H. Khachai, R. Khenata, Mater. Sci. Semicond. Proc. 39, 276 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Fakhri, A. Mahjoub, A. Cheshmekhavar, Appl. Surf. Sci. 318, 65 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Tomić, L. Bernasconi, B.G. Searle, N.M. Harrison, J. Phys. Chem. C 118, 14478 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Azimi, Y. Hou, C. Brabec, Energy Environ. Sci. 7, 1829 (2014)CrossRefGoogle Scholar
  10. 10.
    D. Lee, K. Yong, J. Phys. Chem. C 118, 7788 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Li, N. Coates, D. Moses, J. Am. Chem. Soc. 132, 22 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Azimi, T. Heumuller, A. Gerl, G. Matt, P. Kubis, M. Distaso, R. Ahmad, T. Akdas, M. Richter, W. Peukert, C.J. Brabec, Adv. Eng. Mater. 3, 1589 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Wang, Y. Su, C. Chang, Sol. Energy Mater. Sol. Cells 95, 2616 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Cho, S. Ahn, J. Yun, J. Gwak, S.K. Ahn, K. Shin, H. Song, K.H. Yoon, Sol. Energy Mater. Sol. Cells 109, 17 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Ahn, K. Kim, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn, K. Yoon, ChemSusChem 5, 1773 (2012)CrossRefGoogle Scholar
  16. 16.
    Q. Guo, G.M. Ford, R. Agrawal, H.W. Hillhouse, Prog. Photovolt. Res. Appl. 21, 64 (2013)CrossRefGoogle Scholar
  17. 17.
    H.T. Tung, I.G. Chen, J.M. Song, M.G. Tsai, I.M. Kempson, G. Margaritondo, Y. Hwu, Nanoscale 5, 4706 (2013)CrossRefGoogle Scholar
  18. 18.
    A.H. Cheshme Khavar, A. Mahjoub, F. Tajabadi, M. Dehghani, N. Taghavinia, Eur. J. Inorg. Chem. 35, 5793 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Li, M. Bloemen, J. Parisi, J. Kolny-Olesiak, A.C.S. Appl, Mater. Interfaces 6, 20535 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Fakhri, A.R. Mahjoub, A.H. CheshmeKhavar, Mater. Sci. Semicond. Proc. 41, 38 (2016)CrossRefGoogle Scholar
  21. 21.
    Q. Li, C. Zou, L. Zhai, L. Zhang, Y. Yang, X. Chen, S. Huang, Cryst. Eng. Commun. 15, 1806 (2013)CrossRefGoogle Scholar
  22. 22.
    Y.S. Lim, J. Jeong, J.Y. Kim, M.J. Ko, H. Kim, B. Kim, U. Jeong, D.-K. Lee, J. Phys. Chem. C 117, 11930 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J. Ind. Eng. Chem. 20, 3335 (2014)CrossRefGoogle Scholar
  24. 24.
    S.H. Chang, M.Y. Chiang, C.C. Chiang, F.W. Yuan, C.Y. Chen, B.C. Chiu, T.L. Kao, C.H. Lai, H.Y. Tuan, Energy Environ. Sci. 4, 4929 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Xia, Y. Liu, X. Qiu, Y. Mao, J. He, L. Chen, Mater. Chem. Phys. 136, 823 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Cao, Y. Zhu, X. Yang, C. Li, RSC Adv. 2, 4055 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Nanu, J. Schoonman, A. Goossens, Nano Lett. 5, 1716 (2005)CrossRefGoogle Scholar
  28. 28.
    J. He, W. Zhou, S. Wu, Cryst. Eng. Commun. 14, 3638 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Krzewska, H. Podsiadły, L. Pajdowski, J. Inorg. Nucl. Chem. 42, 89 (1980)CrossRefGoogle Scholar
  30. 30.
    H.Z. Zhong, Y. Zhou, M.F. Ye, Y.J. He, J.P. Ye, C. He, C.H. Yang, Y.F. Li, Chem. Mater. 20, 6434 (2008)CrossRefGoogle Scholar
  31. 31.
    R.L. Penn, J. Phys. Chem. B 108, 12707 (2004)CrossRefGoogle Scholar
  32. 32.
    Z.Y. Tang, N.A. Kotov, M. Giersig, Science 297, 237 (2002)CrossRefGoogle Scholar
  33. 33.
    A. Narayanaswamy, H.F. Xu, N. Pradhan, M. Kim, X.G. Peng, J. Am. Chem. Soc. 128, 10310 (2006)CrossRefGoogle Scholar
  34. 34.
    K.W. Cheng, Y.C. Wu, Y.T. Hu, Mater. Res. Bull. 48, 2457 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Goossens, J. Hofhuis, Nanotechnology 19, 424018 (2008)CrossRefGoogle Scholar
  36. 36.
    J.W. Cho, S.J. Park, W. Kim, B.K. Min, Nanotechnology 2, 265401 (2012)CrossRefGoogle Scholar
  37. 37.
    T. Ryo, D.C. Nguyen, M. Nakagiri, N. Toyoda, H. Matsuyoshi, S. Ito, Thin Solid Films 516, 7184 (2011)CrossRefGoogle Scholar
  38. 38.
    M.R. Balboul, A. Jasenek, O. Chernykh, U. Rau, H.W. Schock, Thin Solid Films 387, 74 (2001)CrossRefGoogle Scholar
  39. 39.
    A. Cheshmekhavar, A. Mahjoub, H. Fakhri, M. Dehghani, RSC Adv. 15, 9738 (2015)Google Scholar
  40. 40.
    E. Yablonovitch, G.D. Cody, Electron. Dev. 29, 300 (1982)CrossRefGoogle Scholar
  41. 41.
    S. Dadgostar, F. Tajabadi, N. Taghavinia, ACS Appl. Mater. Interfaces 4, 2964 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. H. Cheshme Khavar
    • 1
  • A. R. Mahjoub
    • 1
  • H. Fakhri
    • 1
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations