Structure and Photocatalytic Property of a Novel Three-Dimensional Supramolecular Cu(ΙΙ) Coordination Polymer with pcu Topology Based on the Rigid Multifunctional Ligand

  • Xiaoshuo Wu Pengfei Wang
  • Siyuan Xu Pengpeng Lu


A new copper coordination polymer, [Cu2L4(H2O)2]n (1), (HL = 3-(pyridine-2-yl)benzoic acid) has been solvothermally synthesized by using the HL and CuCl2⋅2H2O and characterized by IR spectra, elemental analysis, single-crystal and powder X-ray diffractions, and TGA. Compound 1 contains a well-known paddle-wheel unit [Cu2(COO)4], which is connected to a three-dimensional supramolecular structure with pcu topology through the hydrogen bond interactions. Compound 1 displays considerable thermal stability and exhibits selective absorption in the visible region, which is shown by thermogravimetric analysis and solid-state UV–Vis diffuse-reflectance spectra, respectively. In addition, compound 1 represents an example of visible light driven photocatalyst based on coordination polymer and shows good degradation ability over Rhodamine B (RhB).


Coordination polymer Multifunctional ligand Photocatalytic activity 



This work was financially supported by the National Nature Science Foundation of China (No. 21101019), the Natural Science Foundation of Anhui Province University (No. gxyqZD2016371) and the Chizhou College (No.2015ZR001).

Supplementary material

10904_2016_404_MOESM1_ESM.doc (194 kb)
Supplementary material 1 (DOC 193 kb) CCDC-1476277 contains the supplementary crystallographic data for compound 1. These data also can be obtained free of charge from The Cambridge Crystalographic Data Centra via Supplementary data associated with this manuscript can be found in supporting information


  1. 1.
    F. Kayaci, S. Vempati, C. Ozgit-Akgun, I. Donmez, N. Biyikli, T. Uyar, Nanoscale. 6, 5735 (2014)CrossRefGoogle Scholar
  2. 2.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Nanoscale. 6, 11988 (2014)CrossRefGoogle Scholar
  4. 4.
    K.R. Reddy, B.S. Cheol, C.H. Yoo, D. Sohn, Y. Lee, J. Colloid. Interface. Sci. 340, 160 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Hassan, K.R. Reddy, E. Haque, A.I. Minett, V.G. Gomes, J. Colloid. Interface. Sci. 410, 43 (2013)CrossRefGoogle Scholar
  6. 6.
    K.R. Reddy, B.S. Cheol, K.R. Sun, C.J. Kim, H. Chung, Y. Lee, Synth. Met. 159, 595 (2009)CrossRefGoogle Scholar
  7. 7.
    K.R. Reddy, K.P. Lee, I.A. Gopalan, A.M. Showkat, Polym. Adv. Technol. 18, 38 (2007)CrossRefGoogle Scholar
  8. 8.
    S.H. Choi, D.H. Kim, A.V. Raghu, K.R. Reddy, H.I. Lee, K.S. Yoong, H.M. Jeong, B.K. Kim, J. Macromol. Sci. 51, 197 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Li, D. Li, M. O’Keefe, O.M. Yaghi, Chem. Rev. 114, 1343 (2014)CrossRefGoogle Scholar
  10. 10.
    H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 43, 5415 (2014)CrossRefGoogle Scholar
  11. 11.
    L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P.V. Duyne, J.T. Hupp, Chem. Rev. 112, 1105 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Zhang, W.-B. Lin, Chem. Soc. Rev. 43, 5982 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Liu, S.-M. Wang, Z.-B. Han, M.-L. Ding, D.-Q. Yaun, H.-L. Jiang, Inorg. Chem. 55, 3558 (2016)CrossRefGoogle Scholar
  14. 14.
    F. Wang, Z.-S. Liu, H. Yang, Y.-X. Tan, J. Zhang, Angew. Chem. Int. Ed. Engl. 50, 450 (2011)CrossRefGoogle Scholar
  15. 15.
    L.-L. Wen, J.-B. Zhao, K.-L. Lv, Y.-H. Wu, K.-J. Deng, X.-K. Leng, D.-F. Li, Cryst. Growth Des. 12, 1603 (2012)CrossRefGoogle Scholar
  16. 16.
    T. Wen, D.-X. Zhang, J. Zhang, Inorg. Chem. 52, 12 (2013)CrossRefGoogle Scholar
  17. 17.
    P. Manna, J. Debgupta, S. Bose, S.K. Das, Angew. Chem. Int. Ed. Engl. 55, 2425 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Wang, Z.-G. Xie, K.E. Krafft, W.-B. Lin, J. Am. Chem. Soc. 133, 13445 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Wang, J.-L. Wang, W.-B. Lin, J. Am. Chem. Soc. 134, 19895 (2012)CrossRefGoogle Scholar
  20. 20.
    H.-Q. Xu, J.-H. Hu, D.-K. Wang, Z.-H. Li, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, J. Am. Chem. Soc. 137, 13440 (2015)CrossRefGoogle Scholar
  21. 21.
    C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G.-S. Guo, Energy. Environ. Sci. 7, 2831 (2014)Google Scholar
  22. 22.
    B. Xu, Z.-M. Chen, P.-F. Zhi, G.-N. Liu, C.-C. Li, Inorg. Chem. Commun. 52, 9 (2015)CrossRefGoogle Scholar
  23. 23.
    O.R. Evans, W.-B. Lin, Chem. Mater. 13, 2705 (2001)CrossRefGoogle Scholar
  24. 24.
    R.-Q. Zhong, R.-Q. Zou, M. Du, L. Jiang, T. Yanada, G. Maruta, S. Takeda, Q. Xu, Cryst. Eng. Comm. 10, 605 (2008)CrossRefGoogle Scholar
  25. 25.
    J.-H. Luo, Y.-S. Zhao, H.-W. Xu, T.L. Kinnibrugh, D.-L. Yang, T.V. Timofeeva, L.L. Daemen, J.-Z. Zhang, W. Bao, J.D. Thompson, R.P. Currier, Inorg. Chem. 46, 9021 (2007)CrossRefGoogle Scholar
  26. 26.
    Y-B. Zhang, H-L. Zhou, C-T He, W. Xue, J-P Zhang, X-M. Chen, Chem. J. Chinese University. 32, 497 (2011)Google Scholar
  27. 27.
    SAINT version 6.02a, Software Reference Manual (Bruker AXS Inc, Madison, WI, 2002)Google Scholar
  28. 28.
    G.M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures (University of Göttingen, Germany, 1997)Google Scholar
  29. 29.
    G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures (University of Göttingen, Germany, 1997)Google Scholar
  30. 30.
    C.-H. Zhou, Y.-M. Wang, K. Jin, J.-J. Ma, J.-S. Hu, Inorg. Chem. Commun. 62, 81 (2015)CrossRefGoogle Scholar
  31. 31.
    M. O’Keefe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, Acc. Chem. Res. 41, 1782 (2008)CrossRefGoogle Scholar
  32. 32.
    V.A. Blatov, A.P. Shevchenko, TOPOS 4.0 (Samara State University, Russia, 2008)Google Scholar
  33. 33.
    K. Nakamoto, Infrared and raman spectra of inorganic and coordination compounds, 6th edn. (Wiley, New Jersey, 2009)Google Scholar
  34. 34.
    W.-L. Liu, J.-H. Yu, J.-X. Jiang, L.-M. Yuan, B. Xu, Q. Liu, B.-T. Qu, G.-Q. Zhang, C.-G. Yan, Cryst. Eng. Comm. 13, 2764 (2011)CrossRefGoogle Scholar
  35. 35.
    Z.-Q. Shi, N.-N. Ji, G.-F. He, Y.-F. Han, Chin. J. Inorg. Chem. 27, 1507 (2011)Google Scholar
  36. 36.
    J.-S. Hu, X.-H. Huang, C.-L. Pan, L. Zhang, Cryst. Growth Des. 15, 2272 (2015)CrossRefGoogle Scholar
  37. 37.
    T. Leshuk, S. Linley, G. Baxter, F. Gu, A.C.S. Appl, Mater. Interfaces. 4, 6062 (2012)CrossRefGoogle Scholar
  38. 38.
    M.P. Seabra, E. Rego, A. Ribeiro, J.A. Labrincha, Chem. Eng. J. 171, 175 (2011)CrossRefGoogle Scholar
  39. 39.
    K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Express. 1, 015012 (2012)CrossRefGoogle Scholar
  40. 40.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 10, 7951 (2010)CrossRefGoogle Scholar
  41. 41.
    K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, J. Nanosci. Nanotechnol. 11, 3692 (2011)CrossRefGoogle Scholar
  42. 42.
    Z.-L. Liao, G.-D. Li, M.-H. Li, J.-S. Chen, Inorg. Chem. 47, 4844 (2008)CrossRefGoogle Scholar
  43. 43.
    C.G. Silva, I. Luz, F.X.L. Xamena, A. Corma, H. García, Chem. Eur. J. 16, 11133 (2010)CrossRefGoogle Scholar
  44. 44.
    Q. Zhang, J.N.M. Shreeve, Angew. Chem. Int. Ed. Engl. 53, 2540 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaoshuo Wu Pengfei Wang
    • 1
  • Siyuan Xu Pengpeng Lu
    • 1
  1. 1.School of Chemistry and Material EngineeringChizhou CollegeChizhouPeople’s Republic of China

Personalised recommendations