Uniform Terbium Coordination Polymer Microspheres: Preparation and Luminescence

  • Peng Tao
  • Cheng-Hui Zeng
  • Kai Zheng
  • Chen-Qi Huang
  • Sheng-Liang Zhong


Uniform terbium coordination polymer microsphere particles are synthesized via a facile solvothermal method, using 3-methyl benzoic acid (3-MeBAH) as ligand. The products were characterized by SEM, PXRD, EA, FT-IR, downconversion and upconversion luminescence. PXRD result confirms that sample 1 has one dimensional structure, which is constructed by dinuclear second building unit. The effect factors of reaction temperature and reaction time in synthesizing the uniform microsphere particles were investigated in detail. Downconversion luminescence research shows the sample 1 exhibits characteristic transitions at 488, 544, 585, 621 and 636 nm, which corresponding to the transitions of 5D4 → 7F6, 5D4 → 7F5, 5D4 → 7F4, 5D4 → 7F3 and 5D4 → 7F2 of Tb3+ respectively, and the strongest peak is at 544 nm. The absolute luminescence quantum yield of sample 1 is as high as 32.7 %. Furthermore, investigation indicates the upconversion luminescence of sample 1 is the two-photo absorption of the ligand.


Terbium Coordination polymer Microspheres Luminescence 



The authors acknowledge the financial support of the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education (No. KLFS-KF-201422), Jiangxi Normal University (No. 5616).


  1. 1.
    M. Stockman, Nat. Mater. 3, 423 (2004)CrossRefGoogle Scholar
  2. 2.
    K. Zheng, K.-L. Lou, C.-H. Zeng, S.-S. Li, Z.-W. Nie, S. Zhong, Photochem. Photobiol. 91, 814 (2015)CrossRefGoogle Scholar
  3. 3.
    B. Cristovao, Z. Hnatejko, J. Mol. Struct. 1088, 50 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.-Q. Yan, X.-T. Meng, R.-R. Su, C.-H. Zeng, Y.-Y. Yang, S. Zhong, S.W. Ng, Inorg. Chim. Acta 432, 41 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Geranmayeh, F. Mohammadnezhad, A. Abbasi, J. Inorg. Organomet. Polym. 26, 109 (2016)CrossRefGoogle Scholar
  6. 6.
    C.-H. Zeng, Y.-Y. Yang, Y.-M. Zhu, H.-M. Wang, T.-S. Chu, S.W. Ng, Photochem. Photobiol. 88, 860 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Yawer, M. Kariem, P. Sood, H.N. Sheikh, CrystEngComm 18, 3617 (2016)CrossRefGoogle Scholar
  8. 8.
    Y.Y. Li, B. Yan, Q.P. Li, Dalton Trans. 42, 1678 (2013)CrossRefGoogle Scholar
  9. 9.
    C.-H. Zeng, X.-T. Meng, S.-S. Xu, L.-J. Han, S. Zhong, M.-Y. Jia, Sens. Actuators B 221, 127 (2015)CrossRefGoogle Scholar
  10. 10.
    S.-S. Xu, P. Tao, C.-H. Zeng, Y. Wang, L.-F. Gao, Q.-Q. Nie, S.-L. Zhong, S.W. Ng, Inorg. Chim. Acta 447, 92 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Sobieray, J. Gode, C. Seidel, M. Poss, C. Feldmann, U. Ruschewitz, Dalton Trans. 44, 6249 (2015)CrossRefGoogle Scholar
  12. 12.
    C.-H. Zeng, J.-L. Wang, Y.-Y. Yang, T.-S. Chu, S.-L. Zhong, S.W. Ng, W.-T. Wong, J. Mater. Chem. C 2, 2235 (2014)CrossRefGoogle Scholar
  13. 13.
    W.L. Xiong, Y.L. Wang, Q.Y. Liu, Y. Yao, L.H. Xiong, Inorg. Chem. Commun. 46, 282 (2014)CrossRefGoogle Scholar
  14. 14.
    S.S. Mondal, A. Bhunia, A.G. Attallah, P.R. Matthes, A. Kelling, U. Schilde, K. Mueller-Buschbaum, R. Krause-Rehberg, C. Janiak, H.-J. Holdt, Chem. Eur. J. 22, 6905 (2016)CrossRefGoogle Scholar
  15. 15.
    C.-H. Zeng, F.-L. Zhao, Y.-Y. Yang, M.-Y. Xie, X.-M. Ding, D.-J. Hou, S.W. Ng, Dalton Trans. 42, 2052 (2013)CrossRefGoogle Scholar
  16. 16.
    M.S.M. Abdelbaky, Z. Amghouz, S. Garcia-Granda, J.R. Garcia, Polymers 8(3), 86 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Lin, X. Yan, J. Zheng, C. Dai, Y. Chen, J. Nanomater. 401498 (2014)Google Scholar
  18. 18.
    F. Le Natur, G. Calvez, S. Freslon, C. Daiguebonne, K. Bernot, O. Guillou, J. Mol. Struct. 1086, 34 (2015)CrossRefGoogle Scholar
  19. 19.
    L.N. Sun, Z.J. Wang, J.Z. Zhang, J. Feng, J.L. Liu, Y. Zhao, L.Y. Shi, RSC Adv. 4, 28481 (2014)CrossRefGoogle Scholar
  20. 20.
    G.M. Sequeira, W.Y. Tan, E.G. Moore, Dalton Trans. 44, 13378 (2015)CrossRefGoogle Scholar
  21. 21.
    S.-S. Li, Z.-N. Ye, S.-S. Xu, Y.-J. Zhang, A.-R. Tao, M. Liu, C.-H. Zeng, S. Zhong, RSC Adv. 5, 71961 (2015)CrossRefGoogle Scholar
  22. 22.
    J. Cepeda, S. Perez-Yanez, G. Beobide, O. Castillo, J. Angel Garcia, M. Lanchas, A. Luque, Dalton Trans. 44, 6972 (2015)CrossRefGoogle Scholar
  23. 23.
    Z.-W. Nie, S.-S. Li, C.-H. Zeng, L. Wang, Y. Li, S.-G. Yin, S.-L. Zhong, Z. Anorg. Allg. Chem. 640, 2255 (2014)CrossRefGoogle Scholar
  24. 24.
    S.-L. Zhong, R. Xu, L.-F. Zhang, W.-G. Qu, G.-Q. Gao, X.-L. Wu, A.-W. Xu, J. Mater. Chem. 21, 16574 (2011)CrossRefGoogle Scholar
  25. 25.
    C.-H. Zeng, K. Zheng, K.-L. Lou, X.-T. Meng, Z.-Q. Yan, Z.-N. Ye, R.-R. Su, S. Zhong, Electrochim. Acta 165, 396 (2015)CrossRefGoogle Scholar
  26. 26.
    C.-H. Zeng, S. Xie, M. Yu, Y. Yang, X. Lu, Y. Tong, J. Power Sources 247, 545 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Belei, C. Dumea, E. Bicu, L. Marin, RSC Adv. 5, 8849 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Guo, T. Shen, F. Wu, G. Wang, L. Ye, Z. Liu, B. Zhao, S. Tan, RSC Adv. 6, 13177 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Kang, D. Yang, P. Ma, Y. Dai, M. Shang, D. Geng, Z. Cheng, J. Lin, Langmuir ACS J. Surf Colloids 29, 1286 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Song, J. Chen, D. Hu, F. Liu, P. Li, H. Li, S. Chen, H. Tan, L. Wang, Sens. Actuators B 221, 586 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Zhong, H. Jing, Y. Li, S. Yin, C. Zeng, L. Wang, Inorg. Chem. 53, 8278 (2014)CrossRefGoogle Scholar
  32. 32.
    Z. Wang, H. Liu, S. Wang, Z. Rao, Y. Yang, Sens. Actuators B 220, 779 (2015)CrossRefGoogle Scholar
  33. 33.
    T. Chu, H. Liu, Y. Yang, H. Wang, Y. Hu, Y. Wang, M. Yu, S.W. Ng, J. Photochem. Photobiol. A 294, 38 (2014)CrossRefGoogle Scholar
  34. 34.
    E. Martinez-Castro, J. Garcia-Sevillano, F. Cusso, M. Ocana, J. Alloys Compd. 619, 44 (2015)CrossRefGoogle Scholar
  35. 35.
    H. Tan, G. Tang, C. Ma, Q. Li, Anal. Chim. Acta 908, 161 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Hu, Y. Song, L. Wang, J. Nanopart. Res. 17, 310 (2015)CrossRefGoogle Scholar
  37. 37.
    Q. Li, C. Wang, H. Tan, G. Tang, J. Gao, C.-H. Chen, RSC Adv. 6, 17811 (2016)CrossRefGoogle Scholar
  38. 38.
    J.F. Ma, Z.S. Jin, J.Z. Ni, Acta Chim. Sinica 51, 265 (1993)Google Scholar
  39. 39.
    Y.-X. Chi, J.-Q. Qiu, W.-T. Zhu, J. Jin, S.-Y. Niu, G.-N. Zhang, J. Inorg. Organomet. Polym. 22, 125 (2012)CrossRefGoogle Scholar
  40. 40.
    J. Fan, T. Xiao, J. Wang, S. Zheng, J. Tan, W. Zhang, J. Inorg. Organomet. Polym. 21, 723 (2011)CrossRefGoogle Scholar
  41. 41.
    J.-C. Zhong, S.-Z. Ge, F. Wan, Y.-Q. Sun, Y.-P. Chen, J. Inorg. Organomet. Polym. 24, 633 (2014)CrossRefGoogle Scholar
  42. 42.
    H.-J. Zhang, R.-Q. Fan, P. Wang, X.-M. Wang, W. Chen, X.-B. Zheng, K. Li, Y.-L. Yang, J. Inorg. Organomet. Polym. 24, 624 (2014)CrossRefGoogle Scholar
  43. 43.
    R. Wang, M. Liu, C. Zhao, G. Liu, X. Zhu, Y. Yang, J. Inorg. Organomet. Polym. 24, 442 (2014)CrossRefGoogle Scholar
  44. 44.
    F. Terenziani, C. Le Droumaguet, C. Katan, O. Mongin, M. Blanchard-Desce, Chemphyschem 8, 723 (2007)CrossRefGoogle Scholar
  45. 45.
    A. Picot, F. Malvolti, B. Le Guennic, P.L. Baldeck, J.A.G. Williams, C. Andraud, O. Maury, Inorg. Chem. 46, 2659 (2007)CrossRefGoogle Scholar
  46. 46.
    T.J. Sorensen, O.A. Blackburn, M. Tropiano, S. Faulkner, Chem. Phys. Lett. 541, 16 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi’s Key Laboratory of Green Chemistry, College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations