Skip to main content
Log in

Poly(2-Hydroxyethyl Methacrylate-Bis[Trimethoxysilylpropyl]Amine) Hybrid Networks

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, our goal is to improve the understanding of structural control of hybrid materials synthesized by using acid-catalyzed sol–gel reactions of bis-[trimethoxysilylpropyl]amine (BisSi) and 2-hydroxyethyl methacrylate (HEMA) via free radical in a common solvent. Polymer networks compositions were determined by FTIR and 1H-NMR spectroscopy. The thermal properties of the P(HEMA-BisSi) hybrids with different silica content (e.g. 10, 15 and 25 wt%) were determined by thermogravimetric analysis and differential scanning calorimetry. Glass transition temperatures (Tg´s) of P(HEMA-BisSi) networks were also compared with Tg of PHEMA homopolymer. The Tg´ of PHEMA homopolymer was found as 103.74 °C. The thermal stability of these networks was increased with the BisSi content. Scanning electron microscopy images showed that an increase in acid content caused a decrease in the pore size and pore volume as well as in the surface area of the xerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocampatibility. Biomaterials 26, 4767–4778 (2005)

    Article  CAS  Google Scholar 

  2. M. Assefi, F. Davar, H. Hadadzadeh, Green synthesis of nanosilica by thermal decomposition of pine cones and pine needles. Adv. Powder Technol. 26, 1583–1589 (2015)

    Article  CAS  Google Scholar 

  3. D. Azolin, C. Moro, T. Costa, E. Benvenutti, Effects of organic content and H2O/TEOS molar ratio eon the porosity and pore size distribution of hybrid naphthaleneaminepropylsilica xerogel. J. Non-Cryst. Solids 337, 201–204 (2004)

    Article  CAS  Google Scholar 

  4. T. Caykara, C. Özyürek, Ö. Kantoglu, B. Erdogan, Thermal behavior of poly(2-hydroxyethyl methacrylate-maleic acid) networks. Polym. Degrad. Stab. 80, 339–343 (2003)

    Article  CAS  Google Scholar 

  5. P. Chhabra, R. Gupta, G. Suri, M. Tyagi, G. Seshadri, Studies on development of polymer materials using gamma irradiation for contact and intraocular lenses. Int. J. Polym. Sci. 2009, 01–09 (2009). doi:10.1155/2009/906904

    Article  Google Scholar 

  6. R.O. Costa, W.L. Vasconcelos, Structural modification of poly(2-hydroxyethyl methacrylate)-silica hybrids utilizing 3-methacryloxypropyltimethoxysilane. J. Non-Cryst. Solids 304, 84–91 (2002)

    Article  CAS  Google Scholar 

  7. A. Cretu, R. Gattin, L. Brachais, D. Barbier-Baudry, Synthesis and degradation of poly(2-hydroxyethyl methacrylate)-graft-poly(ε-caprolactone) copolymers. Polym. Degrad. Stab. 83, 399–404 (2004)

    Article  CAS  Google Scholar 

  8. A.M. Douvas, K. Yannakopoulou, P. Argitis, Thermally-induced acid generation from 18-molybdodiphosphate and 18-tungstodiphosphate within poly(2-hydroxyethyl methacrylate) films. Chem. Mater. 22, 2730–2740 (2010)

    Article  CAS  Google Scholar 

  9. O. Foussaier, M. Menetrier, J.-J. Videau, E. Duguet, Polydimethylsiloxane-based ORMOSIL microstructure: correlation with compressive behavior. Mater. Lett. 42, 305–310 (2000)

    Article  CAS  Google Scholar 

  10. S.M. Juhasz, Preparation of novel bioactive nano-calcium phosphate-hydrogel composites. Sci. Technol. Adv. Mater. 11, 1–7 (2010)

    Article  Google Scholar 

  11. I.M. Kalogeras, The nature of the glassy state: structure and glass transitions. J. Mater. Educ. 34(3–4), 69–94 (2012)

    CAS  Google Scholar 

  12. S. Li, A. Shah, A.J. Hsieh, R. Haghighat, S. Praveen, I. Mukherjee, E. Wei, Characterization of poly(2-hydroxyethyl methacrylate-silica) hybrid materials with different silica contents. Polymer 48, 3982–3989 (2007)

    Article  CAS  Google Scholar 

  13. X. Ma, H. Wang, S. Jin, Y. Wu, X.-J. Liang, Construction of paclitaxel-loaded poly(2-hydroxyethyl methacrylate)-g-poly(lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine copolymer nanoparticle delivery system and evaluation of its anticancer activity. Int. J. Nanomed. 7, 1313–1328 (2012)

    CAS  Google Scholar 

  14. T. Metroke, Y. Wang, W.J. van Ooij, D.W. Schaefer, Chemistry of mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane: an NMR analysis. J. Sol. Sci. Technol. 51, 23–31 (2009)

    Article  CAS  Google Scholar 

  15. T. Ogoshi, Y. Chujo, Organic-inorganic polymer hybrids prepared by the sol–gel method. Compos. Interfaces 11(8–9), 539–566 (2005)

    Article  CAS  Google Scholar 

  16. M. Rao, J. Gray, B. Dave, Smart glasses: molecular programming of dynamic responses in organosilica sol–gels. J. Sol–Gel Sci. Technol. 26, 553–560 (2003)

    Article  CAS  Google Scholar 

  17. B. Reining, H. Keul, H. Hocker, Block copolymers comprising poly(ethylene oxide) and poly(hydroxyethyl methacrylate) blocks: synthesis and characterization. Polymer 43, 3139–3145 (2002)

    Article  CAS  Google Scholar 

  18. M. Santi, S. Huang, S. Iannace, L. Ambrosio, L. Nicolais, G. Peluso, synthesis and characterization of a new interpenetrated poly(2-hydroxyethyl methacrylate)-gelatin composite polymer. Biomaterials 17, 1459–1467 (1996)

    Article  Google Scholar 

  19. Z. Sassi, J. Bureau, A. Bakkali, Spectroscopic study of TMOS-TMSM-MMA gels previously identification of the networks inside the hybrid material. Vib. Spectrosc. 28, 299–318 (2002)

    Article  CAS  Google Scholar 

  20. C. Wan, M. Li, X. Bai, Y. Zhang, Synthesis and characterization of photoluminescent Eu(III) coordination halloysite nanotube-based nanohybrids. J. Phys. Chem. C 133, 16238–16246 (2009)

    Article  Google Scholar 

  21. F. Wolf, N. Friedemann, H. Frey, Poly(lactide)-block-poly(HEMA) block copolymers: an orthogonal one-pot combination of ROP and ATRP, using a Bifunctional initiator. Macromolecules 42, 5622–5628 (2009)

    Article  CAS  Google Scholar 

  22. I. Zareba-Groz, W. Mista, A. Sikora, T. Gotszalk, Textural properties of silica-based organic-inorganic polymer hybrid xerogels. Mater. Sci. Pol. 23(1), 147–158 (2005)

    Google Scholar 

  23. D. Zhu, W.J. van Ooij, Corrosion protection of metals by water-based silane mixtures of bis[trimethoxysilylpropyl]amine and vinyltriacetoxysilane. Prog. Org. Coat. 49, 42–53 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by DGEST-4416.11-P. The authors wish to express their sincere thanks to the BUAP-CUV for their guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Salgado-Delgado or V. M. Castaño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado-Delgado, R., Bustos-Figueroa, L.A., García-Hernández, E. et al. Poly(2-Hydroxyethyl Methacrylate-Bis[Trimethoxysilylpropyl]Amine) Hybrid Networks. J Inorg Organomet Polym 26, 756–763 (2016). https://doi.org/10.1007/s10904-016-0391-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0391-x

Keywords

Navigation