Poly(2-Hydroxyethyl Methacrylate-Bis[Trimethoxysilylpropyl]Amine) Hybrid Networks

  • R. Salgado-Delgado
  • L. A. Bustos-Figueroa
  • E. García-Hernández
  • Z. Vargas-Galarza
  • A. M. Salgado-Delgado
  • A. Olarte-Paredes
  • T. López-Lara
  • J. B. Hernández-Zaragoza
  • V. M. Castaño


In this paper, our goal is to improve the understanding of structural control of hybrid materials synthesized by using acid-catalyzed sol–gel reactions of bis-[trimethoxysilylpropyl]amine (BisSi) and 2-hydroxyethyl methacrylate (HEMA) via free radical in a common solvent. Polymer networks compositions were determined by FTIR and 1H-NMR spectroscopy. The thermal properties of the P(HEMA-BisSi) hybrids with different silica content (e.g. 10, 15 and 25 wt%) were determined by thermogravimetric analysis and differential scanning calorimetry. Glass transition temperatures (Tg´s) of P(HEMA-BisSi) networks were also compared with Tg of PHEMA homopolymer. The Tg´ of PHEMA homopolymer was found as 103.74 °C. The thermal stability of these networks was increased with the BisSi content. Scanning electron microscopy images showed that an increase in acid content caused a decrease in the pore size and pore volume as well as in the surface area of the xerogel.


2-Hydroxyethyl methacrylate Bis-[trimethoxysilylpropyl]amine Polymer networks 



This study was supported by DGEST-4416.11-P. The authors wish to express their sincere thanks to the BUAP-CUV for their guidance and support.


  1. 1.
    S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocampatibility. Biomaterials 26, 4767–4778 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Assefi, F. Davar, H. Hadadzadeh, Green synthesis of nanosilica by thermal decomposition of pine cones and pine needles. Adv. Powder Technol. 26, 1583–1589 (2015)CrossRefGoogle Scholar
  3. 3.
    D. Azolin, C. Moro, T. Costa, E. Benvenutti, Effects of organic content and H2O/TEOS molar ratio eon the porosity and pore size distribution of hybrid naphthaleneaminepropylsilica xerogel. J. Non-Cryst. Solids 337, 201–204 (2004)CrossRefGoogle Scholar
  4. 4.
    T. Caykara, C. Özyürek, Ö. Kantoglu, B. Erdogan, Thermal behavior of poly(2-hydroxyethyl methacrylate-maleic acid) networks. Polym. Degrad. Stab. 80, 339–343 (2003)CrossRefGoogle Scholar
  5. 5.
    P. Chhabra, R. Gupta, G. Suri, M. Tyagi, G. Seshadri, Studies on development of polymer materials using gamma irradiation for contact and intraocular lenses. Int. J. Polym. Sci. 2009, 01–09 (2009). doi: 10.1155/2009/906904 CrossRefGoogle Scholar
  6. 6.
    R.O. Costa, W.L. Vasconcelos, Structural modification of poly(2-hydroxyethyl methacrylate)-silica hybrids utilizing 3-methacryloxypropyltimethoxysilane. J. Non-Cryst. Solids 304, 84–91 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Cretu, R. Gattin, L. Brachais, D. Barbier-Baudry, Synthesis and degradation of poly(2-hydroxyethyl methacrylate)-graft-poly(ε-caprolactone) copolymers. Polym. Degrad. Stab. 83, 399–404 (2004)CrossRefGoogle Scholar
  8. 8.
    A.M. Douvas, K. Yannakopoulou, P. Argitis, Thermally-induced acid generation from 18-molybdodiphosphate and 18-tungstodiphosphate within poly(2-hydroxyethyl methacrylate) films. Chem. Mater. 22, 2730–2740 (2010)CrossRefGoogle Scholar
  9. 9.
    O. Foussaier, M. Menetrier, J.-J. Videau, E. Duguet, Polydimethylsiloxane-based ORMOSIL microstructure: correlation with compressive behavior. Mater. Lett. 42, 305–310 (2000)CrossRefGoogle Scholar
  10. 10.
    S.M. Juhasz, Preparation of novel bioactive nano-calcium phosphate-hydrogel composites. Sci. Technol. Adv. Mater. 11, 1–7 (2010)CrossRefGoogle Scholar
  11. 11.
    I.M. Kalogeras, The nature of the glassy state: structure and glass transitions. J. Mater. Educ. 34(3–4), 69–94 (2012)Google Scholar
  12. 12.
    S. Li, A. Shah, A.J. Hsieh, R. Haghighat, S. Praveen, I. Mukherjee, E. Wei, Characterization of poly(2-hydroxyethyl methacrylate-silica) hybrid materials with different silica contents. Polymer 48, 3982–3989 (2007)CrossRefGoogle Scholar
  13. 13.
    X. Ma, H. Wang, S. Jin, Y. Wu, X.-J. Liang, Construction of paclitaxel-loaded poly(2-hydroxyethyl methacrylate)-g-poly(lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolamine copolymer nanoparticle delivery system and evaluation of its anticancer activity. Int. J. Nanomed. 7, 1313–1328 (2012)Google Scholar
  14. 14.
    T. Metroke, Y. Wang, W.J. van Ooij, D.W. Schaefer, Chemistry of mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane: an NMR analysis. J. Sol. Sci. Technol. 51, 23–31 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Ogoshi, Y. Chujo, Organic-inorganic polymer hybrids prepared by the sol–gel method. Compos. Interfaces 11(8–9), 539–566 (2005)CrossRefGoogle Scholar
  16. 16.
    M. Rao, J. Gray, B. Dave, Smart glasses: molecular programming of dynamic responses in organosilica sol–gels. J. Sol–Gel Sci. Technol. 26, 553–560 (2003)CrossRefGoogle Scholar
  17. 17.
    B. Reining, H. Keul, H. Hocker, Block copolymers comprising poly(ethylene oxide) and poly(hydroxyethyl methacrylate) blocks: synthesis and characterization. Polymer 43, 3139–3145 (2002)CrossRefGoogle Scholar
  18. 18.
    M. Santi, S. Huang, S. Iannace, L. Ambrosio, L. Nicolais, G. Peluso, synthesis and characterization of a new interpenetrated poly(2-hydroxyethyl methacrylate)-gelatin composite polymer. Biomaterials 17, 1459–1467 (1996)CrossRefGoogle Scholar
  19. 19.
    Z. Sassi, J. Bureau, A. Bakkali, Spectroscopic study of TMOS-TMSM-MMA gels previously identification of the networks inside the hybrid material. Vib. Spectrosc. 28, 299–318 (2002)CrossRefGoogle Scholar
  20. 20.
    C. Wan, M. Li, X. Bai, Y. Zhang, Synthesis and characterization of photoluminescent Eu(III) coordination halloysite nanotube-based nanohybrids. J. Phys. Chem. C 133, 16238–16246 (2009)CrossRefGoogle Scholar
  21. 21.
    F. Wolf, N. Friedemann, H. Frey, Poly(lactide)-block-poly(HEMA) block copolymers: an orthogonal one-pot combination of ROP and ATRP, using a Bifunctional initiator. Macromolecules 42, 5622–5628 (2009)CrossRefGoogle Scholar
  22. 22.
    I. Zareba-Groz, W. Mista, A. Sikora, T. Gotszalk, Textural properties of silica-based organic-inorganic polymer hybrid xerogels. Mater. Sci. Pol. 23(1), 147–158 (2005)Google Scholar
  23. 23.
    D. Zhu, W.J. van Ooij, Corrosion protection of metals by water-based silane mixtures of bis[trimethoxysilylpropyl]amine and vinyltriacetoxysilane. Prog. Org. Coat. 49, 42–53 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. Salgado-Delgado
    • 1
  • L. A. Bustos-Figueroa
    • 1
  • E. García-Hernández
    • 1
  • Z. Vargas-Galarza
    • 1
  • A. M. Salgado-Delgado
    • 1
  • A. Olarte-Paredes
    • 1
  • T. López-Lara
    • 2
  • J. B. Hernández-Zaragoza
    • 2
  • V. M. Castaño
    • 3
  1. 1.División de Estudios de Posgrado e Investigación y Departamento de Ingeniería Química y Bioquímica del Instituto Tecnológico de ZacatepecInstituto Tecnológico de ZacatepecZacatepec de HidalgoMexico
  2. 2.División de Estudios de Posgrado, Facultad de IngenieríaUniversidad Autónoma de QuerétaroQuerétaroMexico
  3. 3.Centro de Fisica Aplicada y Tecnologia AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations