An System of Pd NPs/PAN Composite Fiber Catalyst Adhere to the Aluminum Reactor and Its Catalytic Application in Suzuki Reaction

  • Dongdong Yu
  • Jie Bai
  • Junzhong Wang
  • Chunping Li


The palladium nanofibers/polyacrylonitrile fiber catalysts adhered to the aluminum reactor as a new catalytic system has been demonstrated based on the electrospinning, hydrogenation reduction and low temperature pre-oxidation. The catalyst was characterized by field emission scanning electron microscope, transmission electron microscope and X-ray diffraction. The system exhibited high activity, stability and recyclable in the Suzuki reactions.


Aluminum reactor Electrospinning method Palladium nanoparticles Suzuki reactions Catalysts 



The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No. 21266016).


  1. 1.
    J.L. Xiao, Z.X. Lu, Y.Q. Li, Carboxymethylcellulose-supported palladium nanoparticles generated in situ from palladium (II) carboxymethylcellulose: an efficient and reusable catalyst for Suzuki–Miyaura and Mizoroki–Heck reactions. Ind. Eng. Chem. Res. 54, 790–797 (2015)CrossRefGoogle Scholar
  2. 2.
    F.S. Han, Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 42, 5270–5298 (2014)CrossRefGoogle Scholar
  3. 3.
    L. Zhong, A. Chokkalingama, W.S. Chaa, K.S. Lakhia, X.Y. Su, G. Lawrencea, A. Vinua, Pd nanoparticles embedded in mesoporous carbon: a highly efficient catalyst for Suzuki–Miyaura reaction. Catal. Today 243, 195–198 (2015)CrossRefGoogle Scholar
  4. 4.
    D. Kundu, A.K. Patra, J. Sakamoto, H. Uyama, A palladium-loaded mesoporous polymer monolith as reusable heterogeneous catalyst for cross-coupling reactions. React. Funct. Polym. 79, 8–13 (2014)CrossRefGoogle Scholar
  5. 5.
    A.N. Marziale, D. Jantke, S.H. Faul, T. Reiner, E. Herdtweck, J. Eppinger, An efficient protocol for the palladium-catalysed Suzuki–Miyaura cross-coupling. Green Chem. 13, 169–177 (2011)CrossRefGoogle Scholar
  6. 6.
    J.F. Zhang, M.D. Wang, X.Q. Guo, S. Liu, H. Cao, Y.L. Li, Q. Zhou, X.F. Hou, Activity and recyclability improvement through adjusting the tethering strategy for Pd-catalyzed Suzuki–Miyaura coupling reaction of aryl chlorides. Catal. Lett. 145, 2001–2009 (2015)CrossRefGoogle Scholar
  7. 7.
    G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 131, 8262–8270 (2009)CrossRefGoogle Scholar
  8. 8.
    G.B.B. Varadwaj, S. Rana, K. Parida, Pd(0) nanoparticles supported organofunctionalized clay driving C–C coupling reactions under benign conditions through a Pd(0)/Pd(II) redox interplay. J. Phys. Chem. C 118, 1640–1651 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Peter, A. Derible, J.M. Becht, J. Kiener, C.L. Drian, J. Parmentier, V. Fierro, M. Girleanu, O. Ersen, Biosourced mesoporous carbon with embedded palladium nanoparticles by a one pot soft-template synthesis: application to Suzuki reactions. J. Mater. Chem. A 3, 12297–12306 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.R. Huang, C.P. Li, J. Bai, Y. Zhu, J.Z. Wang, Fabrication nickel nanoparticles-loaded carbon nanofibers catalyst via simple methods with excellent hydrogenation properties for nitrotoluene. J. Inorg. Organomet. Polym. 25, 1000–1005 (2015)CrossRefGoogle Scholar
  11. 11.
    J.H. He, L. Xu, Y. Wu, Y. Liu, Review mathematical models for continuous electrospun nanofibers and electrospun nanoporous microspheres. Polym. Int. 56, 1323–1329 (2007)CrossRefGoogle Scholar
  12. 12.
    D. Li, Y.N. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004)CrossRefGoogle Scholar
  13. 13.
    Y.J. Kim, D.Y. Seong, Effect of polymer matrix on the sensitivity of microfibrous fluorescent chemosensor containing dendritic porphyrin for the detection of dopamine. J. Mater. Sci. 48, 3486–3493 (2013)CrossRefGoogle Scholar
  14. 14.
    D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216–223 (1996)CrossRefGoogle Scholar
  15. 15.
    S.A. Theron, E. Zussman, A.L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45, 2017–2030 (2004)CrossRefGoogle Scholar
  16. 16.
    Q.R. Meng, J. Bai, C.P. Li, Y.R. Huang, H. Liu, H.Q. Li, Electrospun functional cyclodextrins/polystyrene (PS) composite nanofibers and their applications for sorption of Cu (II) ions under aqueous solution. Nanosci. Nanotechnol. Lett. 6, 289–294 (2014)CrossRefGoogle Scholar
  17. 17.
    Y.Q. Dai, W.Y. Liu, E. Formo, Y.M. Sun, Y.N. Xia, Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 22, 326–338 (2011)CrossRefGoogle Scholar
  18. 18.
    D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531–4547 (2000)CrossRefGoogle Scholar
  19. 19.
    N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2, 325–347 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Roziere, Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4, 4761–4785 (2011)CrossRefGoogle Scholar
  21. 21.
    Q.R. Meng, J. Bai, C.P. Li, A brand-new catalytic system: a Pd-based catalyst directly attached on the inner walls of the reactor which independently catalyzed the Heck reaction. RSC Adv. 5, 56157–56161 (2015)CrossRefGoogle Scholar
  22. 22.
    L.P. Guo, J. Bai, J.Z. Wang, H.O. Liang, C.P. Li, W.Y. Sun, Q.R. Meng, Fabricating series of controllable-porosity carbon nanofibers-based palladium nanoparticles catalyst with enhanced performances and reusability. J. Mol. Catal. A 400, 95–103 (2015)CrossRefGoogle Scholar
  23. 23.
    M.Y. Wu, Q.Y. Wang, K.N. Li, Y.Q. Wu, H.Q. Liu, Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym. Degrad. Stab. 97, 1511–1519 (2012)CrossRefGoogle Scholar
  24. 24.
    R.R. Yue, H.W. Wang, D. Bin, J.K. Xun, Y.K. Du, W.S. Lu, J. Guo, Facile one-pot synthesis of Pd–PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation. J. Mater. Chem. A 3, 1077–1088 (2015)CrossRefGoogle Scholar
  25. 25.
    Q. Tan, C.Y. Du, Y.R. Sun, L. Du, G.P. Yin, Y.Z. Gao, A palladium-doped ceria@ carbon core–sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions. Nanoscale 7, 13656–13662 (2015)CrossRefGoogle Scholar
  26. 26.
    P. Bajaj, D.K. Paliwal, A.K. Gupta, Acrylonitrile-acrylic acids copolymers.1. synthesis and characterization. J. Appl. Polym. Sci. 49, 823–833 (1993)CrossRefGoogle Scholar
  27. 27.
    M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 92, 1421–1432 (2007)CrossRefGoogle Scholar
  28. 28.
    J.C. Chen, I.R. Harrison, Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 40, 25–45 (2002)CrossRefGoogle Scholar
  29. 29.
    J.W. Sun, Y.S. Fu, G.Y. He, X.Q. Sun, X. Wang, Green Suzuki–Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Appl. Catal. B 165, 661–667 (2015)CrossRefGoogle Scholar
  30. 30.
    B.Z. Yuan, Y.Y. Pan, Y.W. Li, B.L. Yin, H.F. Jiang, A highly active heterogeneous palladium catalyst for the Suzuki–Miyaura and ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem. Int. Ed. 49, 4054–4058 (2010)CrossRefGoogle Scholar
  31. 31.
    A.M. Xie, K. Zhang, F. Wu, N.N. Wang, Y. Wang, M.Y. Wang, Polydopamine nanofilms as visible light-harvesting interfaces for palladium nanocrystal catalyzed coupling reactions. Catal. Sci. Technol. 6, 1764–1771 (2016)CrossRefGoogle Scholar
  32. 32.
    S.M. Islam, P. Mondal, K. Tuhina, A.S. Roy, S. Mondal, D. Hossain, A reusable polymer-anchored palladium (II) schiff base complex catalyst for the suzuki cross-coupling, heck and cyanation reactions. J. Inorg. Organomet. Polym. 20, 264–277 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dongdong Yu
    • 1
  • Jie Bai
    • 1
  • Junzhong Wang
    • 1
  • Chunping Li
    • 1
  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHohhotPeople’s Republic of China

Personalised recommendations