Advertisement

Polymer Protected and Gel Immobilized Gold and Silver Nanoparticles in Catalysis

  • Sarkyt E. Kudaibergenov
  • Gulnur S. Tatykhanova
  • Bagadat S. Selenova
Article

Abstract

This mini-review is focused on preparation of polymer protected gold (AuNPs) and silver (AgNPs) nanoparticles that are immobilized on the surface of inorganic supporters and within hydrogel and/or cryogel matrices. A series of water soluble polymers such as poly(N-vinylpyrrolidone), poly(acrylic acid), branched polyethyleneimine, and amphoteric cryogel based on the copolymer of N,N-dimethylaminoethylmethacrylate and methacrylic acid poly(DMAEM-MAA) were used for reduction and stabilization of metal nanoparticles. The catalytic properties of polymer protected AuNPs and AgNPs were evaluated with respect to hydrogen peroxide decomposition, hydrogenation of 4-nitrophenol and oxidation of cyclohexane.

Keywords

Gold and silver nanoparticles Water-soluble polymers Stabilization Hydrogels Cryogels Immobilization Catalysis Decomposition Hydrogenation Oxidation 

Abbreviations

AgNPs

Silver nanoparticles

AuNPs

Gold nanoparticles

4-AP

4-Aminophenol

BPEI

Branched poly(ethyleneimine)

CH

Cyclohexane

CH-ol

Cyclohexanol

CH-one

Cyclohexanone

CuNPs

Copper nanoparticles

DLS

Dynamic light scattering

DMAEM

N,N-Dimethylaminoethylmethacrylate

HPEI-IBAM

Hyperbranched poly(ethylenimine) with isobutyramide groups

IL

Ionic liquid

kD

kiloDalton

MAA

Methacrylic acid

MBAA

N,N-Methylenebisacrylamide

Mn

The number-average molecular weight

4-NA

4-Nitroaniline

NIPAM

N-Isopropylacrylamide

2-NP

2-Nitrophenol

4-NP

4-Nitrophenol

NPs

Nanoparticles

PAA

Poly(acrylic acid)

PAAH

Poly(acrylamide) hydrogel

PAMAM

Poly(amidoamine)

PD1-2

Dendrimer based on poly(ethylenimine) as a shell and 2,2-bis(palmytyloxymethyl) propionic acid as a dendrone

PdNPs

Palladium nanoparticles

PEC

Polyelectrolyte complex

PEI

Poly(ethyleneimine)

poly(DMAEM-MAA)

Amphoteric cryogel based on copolymer of N,N-dimethylaminoethylmethacrylate and methacrylic acid

Poly(DMAEM-MAA)/AuNPs

Gold nanoparticles immobilized within poly(DMAEM-MAA) cryogel matrix

PVP

Poly(N-vinylpyrrolidone)

PVP-AgNPs

Silver nanoparticles protected by PVP

PVP-AgNPs/PAAH

Silver nanoparticles protected by PVP and supported onto PAAH

PVP-AgNPs/ZnO

Silver nanoparticles protected by PVP and supported onto ZnO

PVP-AuNPs

Gold nanoparticles protected by PVP

PVP-AuNPs/PAAH

Gold nanoparticles protected by PVP and supported onto PAAH

PVP-AuNPs/ZnO

Gold nanoparticles protected by PVP and supported onto ZnO

SEM

Scanning electron microscope

SOD

Superoxide dismutase

TEM

Transmission electron microscope

TOF

Turnover frequency

TON

Turnover number

UV–Vis

Ultraviolet–Visible spectra

Notes

Acknowledgments

Financial support from the Ministry of Education and Science of the Republic of Kazakhstan in the frame of the Grant No. 1004/GF4 2015–2017 is greatly acknowledged.

References

  1. 1.
    A.D. Pomogailo, G.I. Dzhardimalieva, Metallopolymeric Hybrid Nanocomposites (Nauka, Moscow, 2015)Google Scholar
  2. 2.
    A.D. Pomogailo, A.S. Rozenberg, I.E. Uflyand, Metal Nanoparticles in Polymers (Khimiya, Moscow, 2000)Google Scholar
  3. 3.
    E.A. Bekturov, S.E. Kudaibergenov, R.M. Iskakov, A.K. Zharmagambetova, Zh.E. Ibraeva, S. Shmakov, Polymer-Protected Nanoparticles of Metals, Almaty (2010). In Russian Google Scholar
  4. 4.
    Zh.E. Ibrayeva, S.E. Kudaibergenov, E.A. Bekturov, Stabilization of metal nanoparticles by hydrophilic polymers (Lambert Academic Publishing, Saarbrücken, 2013). In Russian Google Scholar
  5. 5.
    J. Shan, H. Tenhu, Chem. Commun. 44, 4580 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Zhao, N. Li, D. Astruc, Coord. Chem. Rev. 257, 638 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Zhou, J. Ralston, R. Sedev, D.A. Beattie, J. Colloid Interface Sci. 331, 251 (2009)CrossRefGoogle Scholar
  8. 8.
    S.K. Balasubramanian, L. Yang, L.-Y.L. Yung, Ch-N Ong, W.-Y. Ong, L.E. Yu, Biomaterials 31, 9023 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Ram, L. Agrawal, A. Mishra, S.K. Roy, Adv. Sci. Lett. 4, 3431 (2011)CrossRefGoogle Scholar
  10. 10.
    J.W. Chung, Y. Guo, S.-Y. Kwak, R.D. Priestley, J. Mater. Chem. 22, 6017 (2012)CrossRefGoogle Scholar
  11. 11.
    B.J. Morrow, E. Matijević, D.V. Goia, J. Colloid Interface Sci. 335, 62 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Dorris, S. Rucareanu, L. Reven, C.J. Barrett, L.R. Bruce, Langmuir 24, 2532 (2008)CrossRefGoogle Scholar
  13. 13.
    R. Sardar, N.S. Bjorge, J.S. Shumaker-Parry, Macromolecules 41, 4347 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Chen, D.M. Lentz, R.C. Hedden, J. Nanopart. Res. 14, 682 (2012)CrossRefGoogle Scholar
  15. 15.
    C. Note, J. Koetz, L. Wattebled, A. Laschewsky, J. Colloid Interface Sci. 308, 162 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Li, Y. Wu, J. Wang, Q. Zhang, Y. Kou, Zhang S. J. Mater. Chem. 20, 4379 (2010)CrossRefGoogle Scholar
  17. 17.
    B. Mahltig, N. Cheval, J.-F. Gohy, A. Fahmi, J. Polym. Res. 17, 579 (2010)CrossRefGoogle Scholar
  18. 18.
    P. Zhao, N. Li, D. Astruc, Coord. Chem. Rev. 257, 638 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Haruta, Catal. Surv. Jpn. 1, 61 (1997)CrossRefGoogle Scholar
  20. 20.
    Zh-J. Jiang, Ch-Y. Lui, L.-W. Sun, J. Phys. Chem. B. 109, 1730 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Haruta, M. Daté, Appl. Catal. A 222, 427 (2001)CrossRefGoogle Scholar
  22. 22.
    N.R. Shiju, V.V. Guliants, Appl. Catal. A 356, 1 (2009)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, R.W. Cattrall, I.D. McKelvie, S.D. Kolev, Gold Bull. 44, 145 (2011)CrossRefGoogle Scholar
  24. 24.
    C.E. Hoppe, M. Lazzari, I. Pardinas-Blanco, M.A. Lopez-Quintela, Langmuir 22, 7027 (2006)CrossRefGoogle Scholar
  25. 25.
    H. Wu, L. Wang, J. Zhang, Z. Shen, J. Zhao, Catal. Commun. 12, 859 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Xie, X. Zhang, H. Wang, H. Zheng, Y. Huang, Trends Anal. Chem. 39, 114 (2012)CrossRefGoogle Scholar
  27. 27.
    W. He, Y.-T. Zhou, W.G. Wamer, X. Hu, X. Wu, Z. Zheng et al., Biomaterials 34, 765 (2013)CrossRefGoogle Scholar
  28. 28.
    Y. Tauran, A. Brioude, A.W. Coleman, M. Rhimi, B. Kim, World J. Biol. Chem. 4, 35 (2013)Google Scholar
  29. 29.
    E.M. Ahmed, J. Adv. Res. 6, 105 (2015)CrossRefGoogle Scholar
  30. 30.
    P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X. Jun, Loh, Adv. Sci. (2015). doi: 10.1002/advs.201400010 Google Scholar
  31. 31.
    N. Sahiner, Prog. Polym. Sci. 38, 1329 (2013)CrossRefGoogle Scholar
  32. 32.
    V.I. Lozinsky, Russ. Chem. Rev. 71, 489 (2002)CrossRefGoogle Scholar
  33. 33.
    B. Mattiasson, A. Kumar, I. Galaev, Macroporous polymers: production properties and biotechnological/biomedical applications (CRC, Boca Raton, 2010)Google Scholar
  34. 34.
    S.E. Kudaibergenov, N. Nuraje, V.V. Khutoryanskiy, Soft Matter 8, 9302 (2012)CrossRefGoogle Scholar
  35. 35.
    G. Tatykhanova, Zh Sadakbayeva, D. Berillo, I. Galaev, Kh Abdullin, Zh Adilov, S. Kudaibergenov, Macromol. Symp. 7, 317 (2012)Google Scholar
  36. 36.
    S. Kudaibergenov, Z. Adilov, D. Berillo, G. Tatykhanova, Z. Sadakbaeva, K. Abdullin, I. Galaev, eXPRESS Polym. Lett. 6, 346 (2012)CrossRefGoogle Scholar
  37. 37.
    H. Koga, T. Kitaoka, Chem. Eng. J. 68, 420 (2011)CrossRefGoogle Scholar
  38. 38.
    N. Sahiner, S. Yildiz, M. Sahiner, Appl. Surf. Sci. 354, 388 (2015)CrossRefGoogle Scholar
  39. 39.
    N. Sahiner, F. Seven, Energy 71, 170 (2014)CrossRefGoogle Scholar
  40. 40.
    N. Sahiner, S. Yildiz, Fuel Process. Technol. 126, 324 (2014)CrossRefGoogle Scholar
  41. 41.
    N. Sahiner, F. Seven, RSC Adv. 4, 23886 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Ajmal, S. Demirci, M. Siddiq, N. Aktas, N. Sahiner, Colloids Surf. A 486, 29 (2015)CrossRefGoogle Scholar
  43. 43.
    E.K. Baygazieva, N.N. Yesmurzayeva, G.S. Tatykhanova, G.A. Mun, V.V. Khutoryanskiy, S.E. Kudaibergenov, Int. J. Biol. Chem. 7, 14 (2014)Google Scholar
  44. 44.
    S.E. Kudaibergenov, G.S. Tatykhanova, Int. J. Biol. Chem. 6, 40 (2013)Google Scholar
  45. 45.
    S.E. Kudaibergenov, G.S. Tatykhanova, E.K. Baigaziyeva, Proceedings of the International Conference Nanomaterials: Applications and Properties, Sumy State University, vol 1(1), p. 01PCN42, 3 (2012)Google Scholar
  46. 46.
    S.E. Kudaibergenov, E.K. Baigaziyeva, N.N. Yesmurzayeva, Z.A. Nurakhmetova, B.S. Selenova, Proceedings of the International Conference Nanomaterials: Applications and Properties, Sumy State University, vol 2(1), p. 02PCN03, 4 (2013)Google Scholar
  47. 47.
    N. Yesmurzayeva, B. Selenova, S. Kudaibergenov, J. Am. Nanomater. 1, 1 (2013)Google Scholar
  48. 48.
    C.E. Hoppe, M. Lazzari, I. Pardinas-Blanco, M.A. Lopez-Quintela, Langmuir 22, 7027 (2006)CrossRefGoogle Scholar
  49. 49.
    N.N. Yesmurzayeva, B.S. Selenova, S.E. Kudaibergenov, Supramol. Catal. 2, 1 (2015)Google Scholar
  50. 50.
    Zh Ibrayeva, E. Baigaziyeva, N. Yesmurzayeva, G. Tatykhanova, M. Yashkarova, S. Kudaibergenov, Macromol. Symp. 351, 51 (2015)CrossRefGoogle Scholar
  51. 51.
    V. Pardo-Yissar, R. Gabai, A.N. Shipway, T. Bourenko, I. Willner, Adv. Mater. 13, 1320 (2001)CrossRefGoogle Scholar
  52. 52.
    L. Sheeney-Hai-Ichia, G. Sharabi, I. Willner, Adv. Funct. Mater. 12, 27 (2002)CrossRefGoogle Scholar
  53. 53.
    J.M. Weissman, H.B. Sunkara, A.S. Tse, S.A. Asher, Science 274, 959 (1996)CrossRefGoogle Scholar
  54. 54.
    J.H. Holtz, S.A. Asher, Nature 389, 829 (1997)CrossRefGoogle Scholar
  55. 55.
    Y.-J. Lee, P.V. Braun, Adv. Mater. 15, 563 (2003)CrossRefGoogle Scholar
  56. 56.
    C. Echeverria, C. Mijangos, Macromol. Rapid Commun. 31, 54 (2010)CrossRefGoogle Scholar
  57. 57.
    C. Wang, N.T. Flynn, R. Langer, Mater. Res. Soc. Symp. Proc. 820, R.1.2.1 (2004)Google Scholar
  58. 58.
    J. Zhang, B. Zhao, L. Meng, H. Wu, X. Wang, Ch. Li, J. Nanopart. Res. 9, 1167 (2007)CrossRefGoogle Scholar
  59. 59.
    N. Dolya, O. Rojas, S. Kosmella, B. Tiersch, J. Koetz, S. Kudaibergenov, Macromol. Chem. Phys. (2013). doi: 10.1002/macp.201200727 Google Scholar
  60. 60.
    E.K. Nurgaziyeva, G.S. Tatykhanova, G.A. Mun, V.V. Khutoryanskiy, S.E. Kudaibergenov, Int. J. Biol. Chem. 8, 61 (2015)Google Scholar
  61. 61.
    A.N. Klivenko, A. Bolat, S.E. Kudaibergenov, G.A. Mun, Bull. Nat. Eng. Acad. RK. 3, 85 (2014)Google Scholar
  62. 62.
    A.N. Klivenko, G.S. Tatykhanova, N. Nuraje, S.E. Kudaibergenov, Chem. Bull. Karaganda State Univ. 4, 10 (2015)Google Scholar
  63. 63.
    A.I.A. Salem, M. El-Maazawi, A.B. Zaki, Int. J. Chem. Kinet. 32, 643 (2000)CrossRefGoogle Scholar
  64. 64.
    W. He, Y.-T. Zhou, W.G. Wamer, X. Hu, X. Wu, Z. Zheng et al., Biomaterials 34, 765 (2013)CrossRefGoogle Scholar
  65. 65.
    E.A. Moelwyn-Hughes, Physical Chemistry (Pergamon, London, 1957)Google Scholar
  66. 66.
    S.-S. Li, M.D. Gurol, Environ. Sci. Technol. 32, 1417 (1998)CrossRefGoogle Scholar
  67. 67.
    S. Kudaibergenov, Zh Ibraeva, N. Dolya, B. Musabayeva, K. Zharmagambetova, J. Koetz, Macromol. Symp. 274, 11 (2006)CrossRefGoogle Scholar
  68. 68.
    W. He, Y.-T. Zhou, W.G. Wamer, M.D. Boudreau, J.-J. Yin, Biomaterials 33, 7547 (2012)CrossRefGoogle Scholar
  69. 69.
    E. Nurgazieva, G. Tatykhanova, G. Mun, V. Khutoryanskiy, S. Kudaibergenov, Proceedings of the International Conference Nanomaterials: Applications and Properties, Sumy State University, vol 4, p. 02NNSA11, 4 (2015)Google Scholar
  70. 70.
    X.-Y. Liu, F. Cheng, Y. Liu, H.J. Liu, Y.J. Chen, Mater. Chem. 20, 360 (2010)CrossRefGoogle Scholar
  71. 71.
    P. Veerakumar, M. Velayudham, K.-L. Lu, S. Rajagopal, Appl. Catal. A 439, 197 (2012)CrossRefGoogle Scholar
  72. 72.
    R. Seoudi, D.A. Said, World J. Nanosci. Eng. 1, 51 (2011)CrossRefGoogle Scholar
  73. 73.
    D. Shah, H. Kaur, J. Mol. Catal. A 381, 70 (2014)CrossRefGoogle Scholar
  74. 74.
    H. Lu, Q.X. Xueliang, W. Wang, F. Tan, Z. Xiao, J. Chen, Micro NanoLett. 9, 446 (2014)Google Scholar
  75. 75.
    M.S. Islam, W.S. Choi, H.-J. Lee, Int. J. Mater. Mech. Manuf. 2, 1 (2014)Google Scholar
  76. 76.
    M. Nemanashi, R. Meijboom, J. Colloid Interface Sci. 389, 260 (2013)CrossRefGoogle Scholar
  77. 77.
    Y. Liu, Y. Fan, Y. Yuan, Y. Chen, F. Cheng, J. Shi-Chun, J. Mater. Chem. 22, 21173 (2012)CrossRefGoogle Scholar
  78. 78.
    G.S. Tatykhanova, A.N. Klivenko, G.M. Kudaibergenova, S.E. Kudaibergenov. Macromol. Symp. (to be published) (2016)Google Scholar
  79. 79.
    P. Veerakumar, M. Velayudham, K.-L. Lu, S. Rajagopal, Appl. Catal. 439, 197 (2012)CrossRefGoogle Scholar
  80. 80.
    S. Creutz, P. Teyssie, R. Jerome, Macromolecules 30, 6 (1997)CrossRefGoogle Scholar
  81. 81.
    I.V. Berezin, E.T. Denisov, N.M. Emanuel, Oxidation of Cyclohexane (Moscow State University, Moscow, 1962)Google Scholar
  82. 82.
    L.A. Vakhovskaya, S.V. Kruglov, B.G. Freidin, J. Appl. Chem. 51, 1345 (1978)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory of Engineering ProfileK.I. Satpayev Kazakh National Research Technical UniversityAlmatyKazakhstan
  2. 2.Institute of Polymer Materials and TechnologyAlmatyKazakhstan
  3. 3.Department of Chemical TechnologyK. I. Satpayev Kazakh National Research Technical UniversityAlmatyKazakhstan

Personalised recommendations