(H2pdcCuBr2)2∙2(MH+)∙2Br (M = Melamine, H2pdc = Pyridine-2,6-Dicarboxylic Acid): Crystal Structure, Hirshfeld Surface Analysis, Vibrational and Thermal Studies

  • Radhia Mesbeh
  • Besma Hamdi
  • Ridha Zouari


This paper describes the synthesis, as well the structural of a novel complex of Cu(II) with pyridine-2,6-dicarboxylic acid and melamine. The complex was characterized by differential scanning calorimetry (DSC) analysis, Fourier transform infrared and Raman spectroscopy with a detailed analysis of Hirshfeld surfaces and fingerprint plots. The single X-ray diffraction studies have revealed that the compound crystallizes in triclinic P\(\bar{1}\) space group with cell parameters a = 6.9839 (14), b = 11.037 (2), c = 12.990 (2), α = 72.268 (9), β = 75.237 (9), δ = 87.855 (10) and Z = 1. The crystal structure was stabilized by an extensive network of N–H···Br, N–H···O, O–H···N, O–H···Br, C–H···Br and non-classical N–H···N hydrogen bonds. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed on the basis of literature data. The DSC study shows three anomalies at 385, 495 and 507 K.


Crystal structure Pyridine-2,6-dicarboxylic acid 1,3,5-Triazine-2,4,6-triamine Thermal studies Vibrational studies Hirshfeld surfaces analysis 



The authors thank the members of units of common services, at the University of Sfax for their assistance in the measurements for X-ray diffraction. The authors are also thankful to Prof Hamadi KHEMAKHEM, for his co-operating in the Raman spectroscopy measurement.


  1. 1.
    D.P. Murtha, R.A. Walton, Metal carboxylates. VI. mixed ligand complexes of copper (II) containing pyridine-2,6-dicarboxylic acid in its monoanionic and dianionic forms. Inorg. Chim. Acta 8, 279–284 (1974)CrossRefGoogle Scholar
  2. 2.
    X.X. Zhong, X.L. Wang, Y.M. Jiang, Crystal structure and synthesis of cobalt pyridine 2,6-dicarboxylate. J. Guangxi Normal Univ. 22, 60 (2004)Google Scholar
  3. 3.
    T. Douki, B. Setlow, P. Setlow, J. Photochem. Photobiol. B Biol. 4, 591–597 (2005)CrossRefGoogle Scholar
  4. 4.
    K. Murakami, Y. Tanemura, M. Yoshino, J. Nutr. Biochem. 14, 99–103 (2003)CrossRefGoogle Scholar
  5. 5.
    Y. Kazuhiro, Y. Noriko, F. Tadayasu, Eur. Patent EP0603165, 591–597 (1994)Google Scholar
  6. 6.
    G.A. Burdock, Encyclopedia of Food and Color Additives, CRC Press, New York (1996)Google Scholar
  7. 7.
    F.A. La Porta, P.H. Ramos, E.C. de Resende, M.C. Guerreiro, J.O.S. Giacoppo, T.C. Ramalho, J.R. Sambrano, J. Andrés, E. Longo, J. Inorg. Chem. Acta 416, 200–206 (2014)CrossRefGoogle Scholar
  8. 8.
    G.A. van Albada, M. Ghazzali, K. Al-Farhan, E. Bouwman, J. Reedijk, J. Polyhedron. 52, 1059–1064 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Brandi-Blanco, D. Choquesillo-Lazarte, A. Domínguez-Martín, A. Matilla-Hernández, J. González-Pérez, A. Castiñeiras, J.M. Niclós-Gutiérrez, J. Inorg. Biochem. 127, 211–219 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Tyan, M. Yang, S. Jong, C. Wang, J. Shiea, Anal. Bioanal. Chem. 395, 729–735 (2009)CrossRefGoogle Scholar
  11. 11.
    E.L. Kennaway, Biochem. J. 15, 510–512 (1921)CrossRefGoogle Scholar
  12. 12.
    C. Kluwer, International Tables for X-ray crystallography, Dordrecht (1992)Google Scholar
  13. 13.
    G.M. Sheldrick, Acta Crystallogr. Sect. A 64, 112–122 (2007)CrossRefGoogle Scholar
  14. 14.
    O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst. 42, 339–341 (2009)CrossRefGoogle Scholar
  15. 15.
    L.J. Farrugia, ORTEP3 for windows. J. Appl. Crystallogr. 30, 565 (1997)CrossRefGoogle Scholar
  16. 16.
    K. Brandenburg, (1998) Diamond Version 2.0 Impact Gbr. Bonn, GermanyGoogle Scholar
  17. 17.
    M. Koman, M. Melník, M. Moncol, Inorg. Chem. Commun. 3, 262–266 (2000)CrossRefGoogle Scholar
  18. 18.
    J. Shou-Wen, C. Wan-Zhi, Polyhedron 26, 3074–3084 (2007)CrossRefGoogle Scholar
  19. 19.
    C. Julienne, M. Jerome, R. Didier, Acta Crystallogr. Sect. C 60, m101–m103 (2004)CrossRefGoogle Scholar
  20. 20.
    P.K. Bhaumik, S. Jana, S. Chattopadhyay, Inorg. Chim. Acta 390, 167–177 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Janczak, G.J. Perpetuo, Acta Cryst. C 57, 123–125 (2001)CrossRefGoogle Scholar
  22. 22.
    J. Janczak, G.J. Perpetuo, Acta Crystallogr. C 57, 1120–1122 (2001)CrossRefGoogle Scholar
  23. 23.
    J. Janczak, G.J. Perpetuo, Acta Crystallogr. C 57, 1431–1433 (2001)CrossRefGoogle Scholar
  24. 24.
    J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, J. Angew, Chem. Int. Ed. Engl. 34, 1555–1573 (1995)CrossRefGoogle Scholar
  25. 25.
    N. Karâa, B. Hamdi, A. Ben Salah, R. Zouari, J. Mol. Struct. 1013, 48–58 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Ben Nasr, I. Said, M. Rzaigui, Mater. Res. Bull. 36, 789–798 (2001)CrossRefGoogle Scholar
  27. 27.
    N. Chaari, Z. Abdelkefi, S. Chaabouni, N. Chniba-Boudjada, P. Bordet, Phase Transit. 81, 101–111 (2008)CrossRefGoogle Scholar
  28. 28.
    M.A. Spackman, J.J. McKinnon, CrystEngComm 4, 378–392 (2002)CrossRefGoogle Scholar
  29. 29.
    F.P.A. Fabbiani, C.K. Leech, K. Shankland, A. Johnston, P. Fernandes, A.J. Florence, N. Shankland, Acta Cryst. C 63, o659–o663 (2007)CrossRefGoogle Scholar
  30. 30.
    L. Checinska, S. Grabowsky, M. Malecka, A.J. Rybarczyk-Pirek, A. Józwiak, C. Paulmann, P. Luger, Acta Cryst. B 67, 569–581 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Pérez, R.S. Corrêa, A.M. Plutín, B. O’Reilly, M.B. Andrade, Acta Cryst. C. 68, o19–o22 (2012)CrossRefGoogle Scholar
  32. 32.
    S.K. Seth, D. Sarkar, A.D. Jana, T. Kar, Cryst. Growth Des. 11, 4837–4849 (2011)CrossRefGoogle Scholar
  33. 33.
    S.K. Seth, I. Saha, C. Estarellas, A. Frontera, T. Kar, S. Mukhopadhyay, Cryst. Growth Des. 11, 3250–3265 (2011)CrossRefGoogle Scholar
  34. 34.
    S.K. Seth, D. Sarkar, T. Kar, CrystEngComm 13, 4528–4535 (2011)CrossRefGoogle Scholar
  35. 35.
    S.K. Seth, D. Sarkar, A. Roy, T. Kar, CrystEngComm 13, 6728–6741 (2011)CrossRefGoogle Scholar
  36. 36.
    S.K. Seth, N.C. Saha, S. Ghosh, T. Kar, Chem. Phys. Lett. 506, 309–314 (2011)CrossRefGoogle Scholar
  37. 37.
    S.K. Seth, P.C. Mandal, T. Kar, S. Mukhopadhyay, J. Mol. Struct. 994, 109–116 (2011)CrossRefGoogle Scholar
  38. 38.
    P. Manna, S.K. Seth, A. Das, J. Hemming, R. Prendergast, M. Helliwell, S.R. Choudhury, A. Frontera, S. Mukhopadhyay, Inorg. Chem. 51, 3557–3571 (2012)CrossRefGoogle Scholar
  39. 39.
    S.K. Seth, G.C. Maity, T. Kar, J. Mol. Struct. 1000, 120–126 (2011)CrossRefGoogle Scholar
  40. 40.
    J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta Crystallogr. Sect. B 60, 627–668 (2004)CrossRefGoogle Scholar
  41. 41.
    A.L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J.J. Mckinnon, B. Kahr, Cryst. Growth Des. 8, 4517–4525 (2008)CrossRefGoogle Scholar
  42. 42.
    A. Parkin, G. Barr, W. Dong, C.J. Gilmore, D. Jayatilaka, J.J. Mckinnon, M.A. Spackman, C.C. Wilson, CrystEngComm 9, 648–652 (2007)CrossRefGoogle Scholar
  43. 43.
    F.P.A. Fabbiani, L.T. Byrne, J.J. Mckinnon, M.A. Spackman, CrystEngComm 9, 728–731 (2007)CrossRefGoogle Scholar
  44. 44.
    S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, in Crystal Explorer 2.1, University of Western Australia, Perth, 2007Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire des Sciences des Matériaux et d’EnvironnementFaculté des Sciences de SfaxSfaxTunisia

Personalised recommendations