Advertisement

Glycerol and Water Mediated Synthesis of Silver Nanowires in the Presence of Cobalt Chloride as Growth Promoting Additive

  • Nasir M. Abbasi
  • Li Wang
  • Haojie Yu
  • Zain-ul-Abdin
  • Muhammad Akram
  • Hamad Khalid
  • Chen Yongshen
  • Ruoli Sun
  • Muhammad Saleem
  • Zheng Deng
Article
  • 323 Downloads

Abstract

High quality silver nanowires (AgNWs) were synthesized by using CoCl2 as a growth promoting additive in glycerol/water combination as a solvent. This method is not only time saving but also helpful to control morphology of AgNWs. A series of experiments were performed to optimize volume ratio of glycerol to water (G/W). The synergetic effect of the volume ratio of G/W and concentration of growth promoting additive on the morphology of AgNWs was investigated. The possible mechanism for the growth of AgNWs was elucidated by monitoring in situ generation of AgCl as a prominent event. Controlled experiments were performed to investigate the role of individual cobalt and chloride ions by using Co(NO3)2 and NaCl, respectively. The obtained AgNWs were characterized by SEM, TEM and XRD, while surface properties of the obtained AgNWs were studied by XPS. It was found that at specific volume ratio of G/W (3.5:1), mole ratio of PVP to AgNO3 (0.7:1) and concentration of CoCl2 (4 mM), high quality AgNWs were obtained.

Graphical Abstract

Keywords

Nucleation Oxidation AgNWs Surface properties Aspect ratio 

Notes

Acknowledgments

Financial supports from the Science and Technology Program of Zhejiang Province (2013C31146) and Science and Technology innovation Team of Ningbo (2011B82002) are gratefully acknowledged.

References

  1. 1.
    L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, ACS Nano 4, 2955–2963 (2010)CrossRefGoogle Scholar
  2. 2.
    C.-H. Liu, X. Yu, Nanoscale Res. Lett. 6, 75 (2011)CrossRefGoogle Scholar
  3. 3.
    S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, ACS Nano 3, 1767–1774 (2009)CrossRefGoogle Scholar
  4. 4.
    A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, Adv. Mater. 22, 3558–3563 (2010)CrossRefGoogle Scholar
  5. 5.
    Z. Huang, X. Jiang, D. Guo, N. Gu, J. Nanosci. Nanotechnol. 11, 9395–9408 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, Phys. Rev. Lett. 95, 257403–257404 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Nano Lett. 10, 1950–1954 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Chem. Rev. 111, 3669–3712 (2011)CrossRefGoogle Scholar
  9. 9.
    X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66–69 (2001)CrossRefGoogle Scholar
  10. 10.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)CrossRefGoogle Scholar
  11. 11.
    Y.T. Pang, G.W. Meng, Q. Fang, L.D. Zhang, Nanotechnology 14, 20–24 (2003)CrossRefGoogle Scholar
  12. 12.
    X.H. Hu, C.T. Chan, Appl. Phys. Lett. 85, 1520–1522 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Caswell, C.M. Bender, C.J. Murphy, Nano Lett. 3, 667–669 (2003)CrossRefGoogle Scholar
  14. 14.
    D. Chen, X. Qiao, J. Chen, J. Mater. Sci. 22, 1335–1339 (2011)Google Scholar
  15. 15.
    Y.G. Sun, Y.N. Xia, Adv. Mater. 14, 833–837 (2002)CrossRefGoogle Scholar
  16. 16.
    Y.G. Sun, Y.D. Yin, B.T. Mayers, T. Herricks, Y.N. Xia, Chem. Mater. 14, 4736–4745 (2002)CrossRefGoogle Scholar
  17. 17.
    Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, Chem. Phys. Lett. 380, 146–149 (2003)CrossRefGoogle Scholar
  18. 18.
    M.L. Tsuji, Y. Nishizawa, M. Hashimoto, T. Tsuji, Chem. Lett. 33, 370–371 (2004)CrossRefGoogle Scholar
  19. 19.
    C.-W. Chu, H. Yang, W.-J. Hou, J. Huang, G. Li, Y. Yang, Appl. Phys. Lett. 92, 103306 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Gao, P. Jiang, L. Song, L.F. Liu, X.Q. Yan, Z.Q. Zhou, D.F. Liu, J.X. Wang, H.J. Yuan, Z.X. Zhang, X.W. Zhao, X.Y. Dou, W.Y. Zhou, G. Wang, S.S. Xie, J. Phys. D Appl. Phys. 38, 1061–1067 (2005)CrossRefGoogle Scholar
  21. 21.
    F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ion. 32–3, 198–205 (1989)CrossRefGoogle Scholar
  22. 22.
    K.E. Korte, S.E. Skrabalak, Y. Xia, J. Mater. Chem. 18, 437–441 (2008)CrossRefGoogle Scholar
  23. 23.
    S.H. Im, Y.T. Lee, B. Wiley, Y.N. Xia, Angew. Chem. Int. Ed. Engl. 44, 2154–2157 (2005)CrossRefGoogle Scholar
  24. 24.
    B. Wiley, T. Herricks, Y.G. Sun, Y.N. Xia, Nano Lett. 4, 1733–1739 (2004)CrossRefGoogle Scholar
  25. 25.
    S.H. Im, Y.T. Lee, B. Wiley, Y. Xia, Angew. Chem. Int. Ed. 44, 2154–2157 (2005)CrossRefGoogle Scholar
  26. 26.
    R. Long, S. Zhou, B.J. Wiley, Y. Xiong, Chem. Soc. Rev. 43, 6288–6310 (2014)CrossRefGoogle Scholar
  27. 27.
    B. Li, R. Long, X. Zhong, Y. Bai, Z. Zhu, X. Zhang, M. Zhi, J. He, C. Wang, Z.-Y. Li, Y. Xiong, Small 8, 1710–1716 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Gu, F. Jerome, Green Chem. 12, 1127–1138 (2010)CrossRefGoogle Scholar
  29. 29.
    J.I. Garcia, H. Garcia-Marin, E. Pires, Green Chem. 16, 1007–1033 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, Y. Zheng, C.Z. Huang, Y. Xia, J. Am. Chem. Soc. 135, 1941–1951 (2013)CrossRefGoogle Scholar
  31. 31.
    R.J. Joseyphus, T. Matsumoto, H. Takahashi, D. Kodama, K. Tohji, B. Jeyadevan, J. Solid State Chem. 180, 3008–3018 (2007)CrossRefGoogle Scholar
  32. 32.
    Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 3, 955–960 (2003)CrossRefGoogle Scholar
  33. 33.
    G.P. Association, Physical properties of glycerine and its solutions. Glycerine Producers’ Association (1963)Google Scholar
  34. 34.
    C. Yang, H. Gu, W. Lin, M.M. Yuen, C.P. Wong, M. Xiong, B. Gao, Adv. Mater. 23, 3052–3056 (2011)CrossRefGoogle Scholar
  35. 35.
    J. Kestin, M. Sokolov, W.A. Wakeham, J. Phys. Chem. Ref. Data 7, 941–948 (1978)CrossRefGoogle Scholar
  36. 36.
    N.M. Abbasi, H. Yu, L. Wang, Zain-ul-Abdin, W.A. Amer, M. Akram, H. Khalid, Y. Chen, M. Saleem, R. Sun, J. Shan Mater. Chem. Phys. 166, 1–15 (2015)CrossRefGoogle Scholar
  37. 37.
    J.Q. Hu, Q. Chen, Z.X. Xie, G.B. Han, R.H. Wang, B. Ren, Y. Zhang, Z.L. Yang, Z.Q. Tian, Adv. Funct. Mater. 14, 183–189 (2004)CrossRefGoogle Scholar
  38. 38.
    A.R. Tao, S. Habas, P. Yang, Small 4, 310–325 (2008)CrossRefGoogle Scholar
  39. 39.
    V.K. Lamer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847–4854 (1950)CrossRefGoogle Scholar
  40. 40.
    Y. Wang, S.-I. Choi, X. Zhao, S. Xie, H.-C. Peng, M. Chi, C.Z. Huang, Y. Xia, Adv. Funct. Mater. 24, 131–139 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nasir M. Abbasi
    • 1
  • Li Wang
    • 1
  • Haojie Yu
    • 1
  • Zain-ul-Abdin
    • 1
  • Muhammad Akram
    • 1
  • Hamad Khalid
    • 1
  • Chen Yongshen
    • 1
  • Ruoli Sun
    • 1
  • Muhammad Saleem
    • 1
  • Zheng Deng
    • 1
  1. 1.State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations