Photocatalytic Decolorization of Dye Effluent Using Radiation Developed Polymeric Nanocomposites

  • Amr El-Hag Ali
  • Amany I. Raafat
  • Ghada A. Mahmoud
  • Nagwa A. Badway
  • M. A. El-Mottaleb
  • M. F. Elshahawy


In this study [acrylic acid/p(N-vinyl-2-pyrrolidone)] (AAc/PVP) hydrogel was prepared using gamma irradiation technique. The prepared hydrogel was used as a template for in situ preparation of ZnO photocatalyst up to three deposition cycles. The structure, the thermal property, and the surface morphology of (AAc/PVP/ZnO) nanocomposite were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscope (TEM) and scanning electron microscope (SEM) techniques. The photocatalytic activity of the obtained nanocomposite was tested for the degradation of methyl blue dye (MB) in the aqueous medium using UV-light. The effect of operational parameters on the degradation of MB such as UV irradiation time, pH, and initial dye concentration were examined. It was found that complete decolorization of MB dye was achieved after 45 min at pH 4. The degradation rate fitted the pseudo-first-order model and the rate of the photocatalytic reaction of the first preparation cycle of ZnO was higher than that of the third preparation cycle.


Dye degradation Gamma radiation Nanocomposite Photocataysis ZnO 


  1. 1.
    M. Hassan, M.D. AlAhmadi, M. Mosaid, Arab. J. Chem. 8, 72 (2015)CrossRefGoogle Scholar
  2. 2.
    S.-T. Lin, M. Thirumavalavan, T.-Y. Jiang, J.-F. Lee, Carbohydr. Polym. 105, 1 (2014)CrossRefGoogle Scholar
  3. 3.
    I. Mallarda, L.W. Städe, S. Ruellan, P.A.L. Jacobsen, K.L. Larsen, S. Fourmentin, Colloids Surf. A Physicochem. Eng. Asp 482, 50 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Kumar, P. Choudhary, P. Verma, Chem. Pharm. Res. 4, 763 (2012)Google Scholar
  5. 5.
    G.M. Nisola, E. Cho, A.B. Beltran, M. Han, Y. Kim, W. Chung, Chem. 80, 894 (2010)Google Scholar
  6. 6.
    L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, M. Sun, J. Hazard. Mater. 215–216, 272 (2012)CrossRefGoogle Scholar
  7. 7.
    D. Pokhrel, T. Viraraghavan, J. Environ. Manage. 90, 1956 (2009)CrossRefGoogle Scholar
  8. 8.
    Q.I. Rahman, M. Ahmad, S.K. Misra, M. Lohani, Mater. Lett. 91, 170 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang, D. Yang, Powder Technol. 275, 322 (2015)CrossRefGoogle Scholar
  10. 10.
    S.-Q. Li, H.P.-J. Zhou, W.-S. Zhang, H. Peng, J. Alloy Compd. 616, 227 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Liu, S. Wei, W. Gao, J. Hazard. Mater. 287, 59 (2015)CrossRefGoogle Scholar
  12. 12.
    B. Sultan, S. Nurettin, Polym. 52, 4834 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Sahoo, A.K. Gupta, J. Hazard. Mater. 215–216, 302 (2012)CrossRefGoogle Scholar
  14. 14.
    Z. Ying, Z. Jian, Z. Xiulin, C. Zhenping, Radiat. Phys. Chem. 75, 485 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Bhattacharya, B.N. Misra, Prog. Polym. Sci. 29, 767 (2004)CrossRefGoogle Scholar
  16. 16.
    Y.H.F. Al-qudah, G.A. Mahmoud, M.A. Abdel, Khalek. Res. Appl. Sci. 7, 135 (2014)Google Scholar
  17. 17.
    S.G.A. Alla, H.M. Nizam El-Din, A.M. El-Naggar, Eur. Polym. J. 43, 2987 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Yadollahi, I. Gholamali, H. Namazi, M. Aghazadeh, Int. J. Biol. Macromol. 74, 136 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Jin, J. Gu, Y. Shi, K. Shao, X. Yu, G. Yue, Eur. Polym. J. 49, 1871 (2013)CrossRefGoogle Scholar
  20. 20.
    B. Singh, V. Sharma, Int. J. Pharm. 389, 949 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Anitha, B. Balusamy, J. Thiruvadigal, T.S. Natarajan, Carbohydr. Polym. 87, 1065 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Shankar, X. Teng, G. Li, J. Rhim, Food Hydrocoll. 45, 264 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Nicolay, A. Lanzutti, M. Poelman, B. Ruelle, L. Fedrizzi, P. Dubois, M.-G. Olivier, Appl. Surf. Sci. 327, 379 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Bagheri, K.G. Chandrappa, S.B. Abd Hamid, Der. Pharma. Chem. 5, 265 (2013)Google Scholar
  25. 25.
    X. Li, C. Hu, X. Wang, Y. Xi, Appl. Surf. Sci. 258, 4370 (2012)CrossRefGoogle Scholar
  26. 26.
    N. Wetchakun, S. Chainet, S. Phanichphant, K. Wetchakun, Ceram. Int. 41, 5999 (2015)CrossRefGoogle Scholar
  27. 27.
    N. Soltani, E. Saion, W.M.M. Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M.R. Zare, E. Gharibshahi, Sol. Energy 97, 147 (2013)CrossRefGoogle Scholar
  28. 28.
    J.R. Reddy, S. Kurra, R. Guje, S. Palla, N.K. Veldurthi, G. Ravi, M. Vithaln, Ceram. Int. 41, 2869 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Zhao, X. Yang, Build. Environ. 38, 645 (2003)CrossRefGoogle Scholar
  30. 30.
    D.P. Das, N. Biswal, S. Martha, K.M. Parida, J. Mol. Catal. A: Chem. 349, 36 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Chirita, I. Grozescu, Chem. Bull. 54, 1 (2009)Google Scholar
  32. 32.
    A. Sadollahkhani, O. Nur, M. Willander, I. Kazeminezhad, V. Khranovskyy, M.O. Eriksson, R. Yakimova, P.-O. Holtz, Ceram. Inter. 41, 7174 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Bhattacharjee, M. Ahmaruzzaman, Mater. Lett. 145, 74 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Chen, C. Zhao, D.D. Dionysiou, K.E. O’Shea, J. Photochem. Photobiol. A Chem. 307–308, 115 (2015)CrossRefGoogle Scholar
  35. 35.
    L.V. Barbosa, L. Marcal, E.J. Nassar, P.S. Calefia, M.A. Vicente, R. Trujillano, V. Rives, A. Gil, S.A. Korili, K.J. Ciuffi, E.H. de Faria, Catal. Today 246, 133 (2015)CrossRefGoogle Scholar
  36. 36.
    S.F. Mohamed, G.A. Mahmoud, M.F. Abou, Taleb Monatsh. Chem. 144, 129 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amr El-Hag Ali
    • 1
  • Amany I. Raafat
    • 1
  • Ghada A. Mahmoud
    • 1
  • Nagwa A. Badway
    • 2
  • M. A. El-Mottaleb
    • 3
  • M. F. Elshahawy
    • 1
  1. 1.National Center for Radiation Research and TechnologyAtomic Energy AuthorityCairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  3. 3.Chemistry Department, Faculty of ScienceAl-Azhar UniversityAsyûtEgypt

Personalised recommendations