Synthesis, Ceramic Conversion and Microstructure Analysis of Zirconium Modified Polycarbosilane

  • V. Vipin Vijay
  • Sandhya G. Nair
  • K. J. Sreejith
  • Renjith Devasia


Polymer derived ceramics have been widely being explored as high temperature structural components in aerospace as rocket nozzles, nose tip and leading edges of reusable launch vehicles. Polycarbosilane (PCS) was modified by a condensation reaction with zirconium acetylacetonate [Zr(acac)4] to form polyzirconocarbosilane (PZrCS). A series of PZrCS were synthesized, which could be transformed into Si–Zr–C ceramic phases on pyrolysis. The ceramic yield of PCS was significantly improved by the introduction of zirconium into the system. The XRD patterns of the PZrCs show the characteristic peaks of −SiC at 1300 °C and at 1500 °C the characteristic peaks of ZrC and ZrO2 were observed. The carbothermal reaction in PZrCS was completed at 1650 °C and the resulting ceramic was non-oxide SiC/ZrC phase. The SEM images proved that the increase in concentration of zirconium in the final ceramic decreases the surface uniformity. HRTEM analysis of PZrCS heat treated at 1650 °C shows the evolution of oxide free ZrC/SiC phase with compatible grain boundaries without stacking fault. It could be concluded that the technique of introducing ultra-high temperature ceramic phases into the SiC matrix is an effective approach to improve the high-temperature performance of silicon based ceramics.


Polycarbosilane Polyzirconiumcarbosilane Si–Zr–C HR-TEM 


  1. 1.
    T.M. Besmann, B.W. Sheldon, R.A. Lowden, D.P. Stinton, Science 253, 1104 (1991)CrossRefGoogle Scholar
  2. 2.
    R. Naslain, A. Guette, F. Rebillat, R. Pailler, F. Langlais, X. Bourrat, J. Solid State Chem. 177, 449 (2004)CrossRefGoogle Scholar
  3. 3.
    R.M. Laine, F. Babonneau, Chem. Mater. 5, 260 (1993)CrossRefGoogle Scholar
  4. 4.
    S. Yajima, J. Hayashi, M. Omori, K. Okamura, Nature 261, 683 (1976)CrossRefGoogle Scholar
  5. 5.
    E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel, R. Riedel, Mater. Sci. Eng. Res. 26, 97 (2000)CrossRefGoogle Scholar
  6. 6.
    S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, A. Gessler, Acta Astronaut. 55, 409 (2004)CrossRefGoogle Scholar
  7. 7.
    W. Krenkel, B. Heidenreich, R. Renz, Adv. Eng. Mater. 4, 427 (2002)CrossRefGoogle Scholar
  8. 8.
    E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort, F. Guitierrez-Mora, J. Mater. Sci. 39, 5939 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Hasegawa, C.X. Feng, Y.C. Song, Z.L. Tan, J. Mater. Sci. 26, 3657 (1991)CrossRefGoogle Scholar
  10. 10.
    Y.X. Yu, Y.D. Guo, X. Cheng, Y. Zhang, J. Mater. Chem. 19, 5637 (2009)CrossRefGoogle Scholar
  11. 11.
    T. Ishikawa, H. Yamaoka, Y. Harada, T. Fujii, T. Nagasawa, Nature 416, 64 (2002)CrossRefGoogle Scholar
  12. 12.
    Y.X. Yu, Y. Zhang, J.M. Yang, M. Tang, J. Inorg. Organomet. Polym. 17, 569 (2007)CrossRefGoogle Scholar
  13. 13.
    W. Zhou, L. Yan, Y. Wang, Y. Zhang, J. App. Phy. Lett. 89, 131050 (2006)Google Scholar
  14. 14.
    F. Monteverde, Corros. Sci. 47, 2020 (2005)CrossRefGoogle Scholar
  15. 15.
    A.L. Chamberlain, W.G. Fahrenholtz, G. Hilmas, D. Ellesrby, Refract. Appl. Trans. 1, 1 (2005)Google Scholar
  16. 16.
    A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, D.T. Ellerby, Key Eng. Mater. 264, 493 (2004)CrossRefGoogle Scholar
  17. 17.
    M.M. Opeka, I.G. Talmy, J.A. Zaykoski, J. Mater. Sci. 39, 5887 (2004)CrossRefGoogle Scholar
  18. 18.
    A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, D.T. Ellerby, J. Am. Ceram. Soc. 87, 1170 (2004)CrossRefGoogle Scholar
  19. 19.
    F. Monteverde, A. Bellosi, J. Electrochem. Soc. 150, 552 (2003)CrossRefGoogle Scholar
  20. 20.
    Q. Li, S. Dong, Z. Wang, P. He, H. Zhou, J. Yang, B. Wu, J. Hu, J. Am. Ceram. Soc. 95, 1216 (2012)CrossRefGoogle Scholar
  21. 21.
    J. D. Bull, D. J. Rasky, C. C. Karika, in 24th International SAMPE Technical Conference proceedings, pp. T1092 (1992)Google Scholar
  22. 22.
    W.G. Fahrenholtz, G.E. Hilmas, A.L. Chamberlain, J.W. Zimmermann, J. Mater. Sci. 39, 5951 (2004)CrossRefGoogle Scholar
  23. 23.
    A. Rezaie, W.G. Fahrenholtz, G.E. Hilmas, J. Eur. Ceram. Soc. 27, 2495 (2007)CrossRefGoogle Scholar
  24. 24.
    T. Ishikawa, Y. Kohtoku, K. Kumagawa, J. Mater. Sci. 33, 161 (1998)CrossRefGoogle Scholar
  25. 25.
    X. Cheng, Z. Xie, J. Xiao, Y.C. Song, J. Inorg. Organomet. Polym. 15, 253 (2005)CrossRefGoogle Scholar
  26. 26.
    Y. Hasegawa, K. Okamura, J. Mater. Sci. 21, 321 (1986)CrossRefGoogle Scholar
  27. 27.
    F. Cao, D.P. Kim, X.D. Li, C.X. Feng, Y.C. Song, J. Appl. Polym. Sci. 85, 2787 (2002)CrossRefGoogle Scholar
  28. 28.
    P. Hagen, A.G. McDiarmid, Inorg. Chem. 6, 1941 (1967)CrossRefGoogle Scholar
  29. 29.
    A.D. Berry, E.R. Corey, A.P. Hagen, A.G. McDiarmid, F.E. Saalfeld, B.B. Wayland, J. Am. Chem. Soc. 92, 1940 (1970)CrossRefGoogle Scholar
  30. 30.
    J. David, M. Gendre, A. Maitre, G. Trolliard, J. Eur. Ceram. Soc. 33, 165 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Karlin, Ph Colomban, J. Raman Spectrosc. 28, 219 (1997)CrossRefGoogle Scholar
  32. 32.
    M. Yan, W. Song, C. Zhao-hui, Ceram. Int. 36, 2455 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. Vipin Vijay
    • 1
  • Sandhya G. Nair
    • 1
  • K. J. Sreejith
    • 1
  • Renjith Devasia
    • 1
  1. 1.Ceramic Matrix Products DivisionVikram Sarabhai Space CentreThiruvananthapuramIndia

Personalised recommendations