Advertisement

New Iron–Phosphine Macrocycle Complexes for Use in the Pressure-Swing Purification of Natural Gas

  • Bryan P. Nell
  • Charles D. Swor
  • Lev N. Zakharov
  • David R. Tyler
Article

Abstract

Two new synthetic routes to macrocyclic tetradentate phosphine complexes of Fe(II) were investigated. The interest in these materials stems from their potential application in the pressure-swing purification of natural gas contaminated by N2. Both synthetic routes used Fe(II) as a templating metal in order to avoid using Ni, Pd, or Pt, which can be difficult to remove from the macrocyclic phosphine ligand once it has formed. The first synthetic route involved the alkylation of a complex with two bidentate secondary phosphine ligands, specifically trans-[Fe(P2)2(CH3CN)2](PF6)2, where P2 is a bidentate secondary phosphine. Three electrophilic alkylating reagents (1,3-dibromopropane, 1,4-dibromobutane, and o-dibromoxylene) with the potential to bridge were investigated under a variety of reaction conditions, but all failed to yield a macrocycle complex. The second route involved the alkylation of an Fe complex that had a linear tetradentate secondary phosphine ligand. Again, a number of reactions conditions were investigated but all failed to give a macrocycle complex. A number of factors likely contribute to the inability of Fe(II) to act as a template in these reactions. It is proposed that the absence of reactivity can be attributed to the decreased electron density in the d6 iron(II) atom in comparison to the electron-rich d8 and d10 metals normally used as templates. After deprotonation of the coordinated secondary phosphines, the decreased electron density reduces the nucleophilicity of the resulting phosphido ligands and prevents the alkylation reaction from occurring. To aid in the structural characterization of the Fe(II) complexes with secondary phosphine ligands, the X-ray crystal structures of the cis-Fe(MPPP)2Cl2 and trans-[Fe(MPPP)2(CH3CN)2](PF6)2 complexes (MPPP = 1,3-bis(phenylphosphino)propane) were determined.

Keywords

Iron macrocycle complexes Macrocyclic phosphine ligands Pressure-swing absorption Dinitrogen complexes 

Notes

Acknowledgments

Acknowledgment is made to the NSF (CHE-0809393) for the support of this research.

Supplementary material

10904_2015_211_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2300 kb). 1H, 31P, and 13C NMR spectra for phosphines 1 and 2; 31P NMR spectra for complexes 310; mass spectra and isotope patterns for complexes 3–6, 14–15, 14 macrocyclized with o-dibromoxylene, and 15 macrocyclized with o-dibromoxylene; 31P spectra for 1115; 1H NMR spectra for 1113; and a figure showing the possible isomers of 14 (cis-ɑ-Fe(13)Cl2). The crystallographic data for complexes 6 and 10-PF 6 are deposited with the Cambridge Crystallographic Data Centre (CCDC 1038735 and CCDC 1038736, respectively). This data can be obtained free of charge at www.ccdc.ac.uk/data-request/cif

References

  1. 1.
    A. Finn, Hydrocarb. Eng. 12, 49 (2007)Google Scholar
  2. 2.
    M. Mitariten, Hydrocarb. Eng. 9, 53 (2004)Google Scholar
  3. 3.
    A.J. Kidnay, W.R. Parrish, Fundamentals of Natural Gas Processing (CRC Press, Boca Raton, 2010)Google Scholar
  4. 4.
    W.K. Miller, J.D. Gilbertson, C. Leiva-Paredes, P.R. Bernatis, T.J.R. Weakley, D.K. Lyon, D.R. Tyler, Inorg. Chem. 41, 5453 (2002)CrossRefGoogle Scholar
  5. 5.
    J.D. Gilbertson, N.K. Szymczak, J.L. Crossland, W.K. Miller, D.K. Lyon, B.M. Foxman, J. Davis, D.R. Tyler, Inorg. Chem. 46, 1205 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Melson, Coordination Chemistry of Macrocyclic Compounds (Plenum Press, New York, 1979)CrossRefGoogle Scholar
  7. 7.
    C.D. Swor, D.R. Tyler, Coord. Chem. Rev. 255, 2860 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Mizuta, A. Okano, T. Sasaki, H. Nakazawa, Inorg. Chem. 36, 200 (1997)CrossRefGoogle Scholar
  9. 9.
    D.J. Brauer, F. Gol, S. Hietkamp, H. Peters, H. Sommer, O. Stelzer, W.S. Sheldrick, Chem. Ber. 119, 349 (1986)CrossRefGoogle Scholar
  10. 10.
    R. Bartsch, S. Hietkamp, S. Morton, H. Peters, O. Stelzer, Inorg. Chem. 22, 3624 (1983)CrossRefGoogle Scholar
  11. 11.
    T.A. DelDonno, W. Rosen, J. Am. Chem. Soc. 99, 8051 (1977)CrossRefGoogle Scholar
  12. 12.
    B. Lambert, J.F. Desreux, Synthesis 2000, 1668 (2000)CrossRefGoogle Scholar
  13. 13.
    Y.B. Kang, M. Pabel, D.D. Pathak, A.C. Willis, S.B. Wild, Main Group Chem. 1, 89 (1995)CrossRefGoogle Scholar
  14. 14.
    R. Bartsch, S. Hietkamp, H. Peters, O. Stelzer, Inorg. Chem. 23, 3304 (1984)CrossRefGoogle Scholar
  15. 15.
    F. Cecconi, M. Di Vaira, S. Midollini, A. Orlandini, L. Sacconi, Inorg. Chem. 20, 3423 (1981)CrossRefGoogle Scholar
  16. 16.
    J. Chatt, R.G. Hayter, J. Chem. Soc. 5507 (1961)Google Scholar
  17. 17.
    G.S. Girolami, G. Wilkinson, A.M.R. Galas, M. Thornton-Pett, M.B. Hursthouse, J. Chem. Soc. Dalton Trans. 7, 1339 (1985)CrossRefGoogle Scholar
  18. 18.
    J.M. Bellerby, M.J. Mays, P.L. Sears, J. Chem. Soc. Dalton Trans. 13, 1232 (1976)CrossRefGoogle Scholar
  19. 19.
    M.V. Baker, L.D. Field, T.W. Hambley, Inorg. Chem. 27, 2872 (1988)CrossRefGoogle Scholar
  20. 20.
    J. Lewis, M.S. Khan, A.K. Kakkar, P.R. Raithby, K. Fuhrmann, R.H. Friend, J. Organomet. Chem. 433, 135 (1992)CrossRefGoogle Scholar
  21. 21.
    M. Antberg, L. Dahlenburg, Inorg. Chim. Acta 104, 51 (1985)CrossRefGoogle Scholar
  22. 22.
    A.D. Burrows, D. Dodds, A.S. Kirk, J.P. Lowe, M.F. Mahon, J.E. Warren, M.K. Whittlesey, Dalton Trans. 5, 570 (2007)CrossRefGoogle Scholar
  23. 23.
    L.D. Field, I.P. Thomas, T.W. Hambley, P. Turner, Inorg. Chem. 37, 612 (1998)CrossRefGoogle Scholar
  24. 24.
    B. Jana, A. Ellern, O. Pestovsky, A. Sadow, A. Bakac, Inorg. Chem. 50, 3010 (2011)CrossRefGoogle Scholar
  25. 25.
    M.J. Mays, B.E. Prater, E.R. Wonchoba, and G.W. Parshall, Inorg. Synth. 15, 21 (1974)Google Scholar
  26. 26.
    D.S. Glueck, Dalton Trans. 39, 5276 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Baacke, O. Stelzer, V. Wray, Chem. Ber. 113, 1356 (1980)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    C.M. Habeck, C. Hoberg, G. Peters, C. Naether, F. Tuczek, Organometallics 23, 3252 (2004)CrossRefGoogle Scholar
  30. 30.
    K.S. Hagen, Inorg. Chem. 39, 5867 (2000)CrossRefGoogle Scholar
  31. 31.
    J. Dogan, J.B. Schulte, G.F. Swiegers, S.B. Wild, J. Org. Chem. 65, 951 (2000)CrossRefGoogle Scholar
  32. 32.
    Bruker SMART and SAINT (Bruker AXS, Inc., Madison, WI, 2000)Google Scholar
  33. 33.
    G.M. Sheldrick, SADABS 51, 33 (1995)Google Scholar
  34. 34.
    G.M. Sheldrick, Acta Crystallogr. Sect. A 64, 112 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bryan P. Nell
    • 1
  • Charles D. Swor
    • 1
  • Lev N. Zakharov
    • 1
  • David R. Tyler
    • 1
  1. 1.Department of Chemistry and Biochemistry1253 University of OregonEugeneUSA

Personalised recommendations