Skip to main content
Log in

New Iron–Phosphine Macrocycle Complexes for Use in the Pressure-Swing Purification of Natural Gas

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two new synthetic routes to macrocyclic tetradentate phosphine complexes of Fe(II) were investigated. The interest in these materials stems from their potential application in the pressure-swing purification of natural gas contaminated by N2. Both synthetic routes used Fe(II) as a templating metal in order to avoid using Ni, Pd, or Pt, which can be difficult to remove from the macrocyclic phosphine ligand once it has formed. The first synthetic route involved the alkylation of a complex with two bidentate secondary phosphine ligands, specifically trans-[Fe(P2)2(CH3CN)2](PF6)2, where P2 is a bidentate secondary phosphine. Three electrophilic alkylating reagents (1,3-dibromopropane, 1,4-dibromobutane, and o-dibromoxylene) with the potential to bridge were investigated under a variety of reaction conditions, but all failed to yield a macrocycle complex. The second route involved the alkylation of an Fe complex that had a linear tetradentate secondary phosphine ligand. Again, a number of reactions conditions were investigated but all failed to give a macrocycle complex. A number of factors likely contribute to the inability of Fe(II) to act as a template in these reactions. It is proposed that the absence of reactivity can be attributed to the decreased electron density in the d6 iron(II) atom in comparison to the electron-rich d8 and d10 metals normally used as templates. After deprotonation of the coordinated secondary phosphines, the decreased electron density reduces the nucleophilicity of the resulting phosphido ligands and prevents the alkylation reaction from occurring. To aid in the structural characterization of the Fe(II) complexes with secondary phosphine ligands, the X-ray crystal structures of the cis-Fe(MPPP)2Cl2 and trans-[Fe(MPPP)2(CH3CN)2](PF6)2 complexes (MPPP = 1,3-bis(phenylphosphino)propane) were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Scheme 5
Fig. 3
Fig. 4
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This paper is dedicated to the memory of Professor Eberhard W. Neuse.

References

  1. A. Finn, Hydrocarb. Eng. 12, 49 (2007)

    CAS  Google Scholar 

  2. M. Mitariten, Hydrocarb. Eng. 9, 53 (2004)

    CAS  Google Scholar 

  3. A.J. Kidnay, W.R. Parrish, Fundamentals of Natural Gas Processing (CRC Press, Boca Raton, 2010)

    Google Scholar 

  4. W.K. Miller, J.D. Gilbertson, C. Leiva-Paredes, P.R. Bernatis, T.J.R. Weakley, D.K. Lyon, D.R. Tyler, Inorg. Chem. 41, 5453 (2002)

    Article  CAS  Google Scholar 

  5. J.D. Gilbertson, N.K. Szymczak, J.L. Crossland, W.K. Miller, D.K. Lyon, B.M. Foxman, J. Davis, D.R. Tyler, Inorg. Chem. 46, 1205 (2007)

    Article  CAS  Google Scholar 

  6. G. Melson, Coordination Chemistry of Macrocyclic Compounds (Plenum Press, New York, 1979)

    Book  Google Scholar 

  7. C.D. Swor, D.R. Tyler, Coord. Chem. Rev. 255, 2860 (2011)

    Article  CAS  Google Scholar 

  8. T. Mizuta, A. Okano, T. Sasaki, H. Nakazawa, Inorg. Chem. 36, 200 (1997)

    Article  CAS  Google Scholar 

  9. D.J. Brauer, F. Gol, S. Hietkamp, H. Peters, H. Sommer, O. Stelzer, W.S. Sheldrick, Chem. Ber. 119, 349 (1986)

    Article  CAS  Google Scholar 

  10. R. Bartsch, S. Hietkamp, S. Morton, H. Peters, O. Stelzer, Inorg. Chem. 22, 3624 (1983)

    Article  CAS  Google Scholar 

  11. T.A. DelDonno, W. Rosen, J. Am. Chem. Soc. 99, 8051 (1977)

    Article  CAS  Google Scholar 

  12. B. Lambert, J.F. Desreux, Synthesis 2000, 1668 (2000)

    Article  Google Scholar 

  13. Y.B. Kang, M. Pabel, D.D. Pathak, A.C. Willis, S.B. Wild, Main Group Chem. 1, 89 (1995)

    Article  CAS  Google Scholar 

  14. R. Bartsch, S. Hietkamp, H. Peters, O. Stelzer, Inorg. Chem. 23, 3304 (1984)

    Article  CAS  Google Scholar 

  15. F. Cecconi, M. Di Vaira, S. Midollini, A. Orlandini, L. Sacconi, Inorg. Chem. 20, 3423 (1981)

    Article  CAS  Google Scholar 

  16. J. Chatt, R.G. Hayter, J. Chem. Soc. 5507 (1961)

  17. G.S. Girolami, G. Wilkinson, A.M.R. Galas, M. Thornton-Pett, M.B. Hursthouse, J. Chem. Soc. Dalton Trans. 7, 1339 (1985)

    Article  Google Scholar 

  18. J.M. Bellerby, M.J. Mays, P.L. Sears, J. Chem. Soc. Dalton Trans. 13, 1232 (1976)

    Article  Google Scholar 

  19. M.V. Baker, L.D. Field, T.W. Hambley, Inorg. Chem. 27, 2872 (1988)

    Article  CAS  Google Scholar 

  20. J. Lewis, M.S. Khan, A.K. Kakkar, P.R. Raithby, K. Fuhrmann, R.H. Friend, J. Organomet. Chem. 433, 135 (1992)

    Article  CAS  Google Scholar 

  21. M. Antberg, L. Dahlenburg, Inorg. Chim. Acta 104, 51 (1985)

    Article  CAS  Google Scholar 

  22. A.D. Burrows, D. Dodds, A.S. Kirk, J.P. Lowe, M.F. Mahon, J.E. Warren, M.K. Whittlesey, Dalton Trans. 5, 570 (2007)

    Article  Google Scholar 

  23. L.D. Field, I.P. Thomas, T.W. Hambley, P. Turner, Inorg. Chem. 37, 612 (1998)

    Article  CAS  Google Scholar 

  24. B. Jana, A. Ellern, O. Pestovsky, A. Sadow, A. Bakac, Inorg. Chem. 50, 3010 (2011)

    Article  CAS  Google Scholar 

  25. M.J. Mays, B.E. Prater, E.R. Wonchoba, and G.W. Parshall, Inorg. Synth. 15, 21 (1974)

    CAS  Google Scholar 

  26. D.S. Glueck, Dalton Trans. 39, 5276 (2008)

    Article  Google Scholar 

  27. M. Baacke, O. Stelzer, V. Wray, Chem. Ber. 113, 1356 (1980)

    Article  CAS  Google Scholar 

  28. H.J. Reich, http://www.chem.wisc.edu/areas/reich/plt/windnmr.htm. Accessed 7 Dec 2014)

  29. C.M. Habeck, C. Hoberg, G. Peters, C. Naether, F. Tuczek, Organometallics 23, 3252 (2004)

    Article  CAS  Google Scholar 

  30. K.S. Hagen, Inorg. Chem. 39, 5867 (2000)

    Article  CAS  Google Scholar 

  31. J. Dogan, J.B. Schulte, G.F. Swiegers, S.B. Wild, J. Org. Chem. 65, 951 (2000)

    Article  CAS  Google Scholar 

  32. Bruker SMART and SAINT (Bruker AXS, Inc., Madison, WI, 2000)

  33. G.M. Sheldrick, SADABS 51, 33 (1995)

    Google Scholar 

  34. G.M. Sheldrick, Acta Crystallogr. Sect. A 64, 112 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made to the NSF (CHE-0809393) for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Tyler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10904_2015_211_MOESM1_ESM.docx

Supplementary material 1 (DOCX 2300 kb). 1H, 31P, and 13C NMR spectra for phosphines 1 and 2; 31P NMR spectra for complexes 310; mass spectra and isotope patterns for complexes 3–6, 14–15, 14 macrocyclized with o-dibromoxylene, and 15 macrocyclized with o-dibromoxylene; 31P spectra for 1115; 1H NMR spectra for 1113; and a figure showing the possible isomers of 14 (cis-ɑ-Fe(13)Cl2). The crystallographic data for complexes 6 and 10-PF 6 are deposited with the Cambridge Crystallographic Data Centre (CCDC 1038735 and CCDC 1038736, respectively). This data can be obtained free of charge at www.ccdc.ac.uk/data-request/cif

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nell, B.P., Swor, C.D., Zakharov, L.N. et al. New Iron–Phosphine Macrocycle Complexes for Use in the Pressure-Swing Purification of Natural Gas. J Inorg Organomet Polym 25, 495–506 (2015). https://doi.org/10.1007/s10904-015-0211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0211-8

Keywords

Navigation