Redox and Temperature Dual Responsive Gel Based on Host–Guest Assembly

  • Rongbai Tong
  • Li Wang
  • Haojie Yu
  • Zain-ul-Abdin
  • Hamad Khalid
  • Muhammad Akram
  • Yongsheng Chen


Stimuli-responsive hydrogels undergo shape transformation in response to change in ambient environment and have potential applications in tissue engineering, robotics, actuator and biosensing. Generally, the Stimuli-responsive hydrogels are controlled by unique external stimuli and the response is also specific. Here, we developed redox-regulated and temperature responsive macroscopic gel assembly system, using polyacrylamide-based hydrogel, which was functionalized with ferrocene (Fc) as a guest hydrogel and poly(N-isopropylacrylamide) (PNIPAAm) gel modified with β-cyclodextrin as a host hydrogel. It was observed that the variations in the redox potential induced reversible assembly/dissociation transition in a bi-gel strip and optimization of βCD contents provided fast bending speed and large bending degree, which can be applied to develop temperature sensitive switch.


Stimuli-responsive hydrogels Host–guest interaction Assembly/dissociation transition Temperature sensitive switch 



Financial support by National Natural Science Foundation of China (21272210, 21372200, 21472168, 21411130187), International Science and Technology Cooperation Project of Ministry Science and Technology of China (2009 DFR 40640), Science and Technology Program of Zhejiang Province (2013C24001), and Science and Technology Innovation Team of Ningbo (2011B82002), the Fundamental Research Funds for the Central Universities are gratefully acknowledged. We acknowledge Chunxin Ma, doctoral student in Zhejiang University for his help in the experiment.

Supplementary material

10904_2015_210_MOESM1_ESM.docx (654 kb)
Supplementary material 1 (DOCX 654 kb)


  1. 1.
    A.B. Imran, T. Seki, Y. Takeoka, Polym. J. 42, 839–851 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Qiu, K. Park, Adv. Drug Deliv. Rev. 64, 49–60 (2012)CrossRefGoogle Scholar
  3. 3.
    P. Fratzl, F.G. Barth, Nature 462, 442–448 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Ionov, Soft Matter 7, 6786–6791 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Doring, W. Birnbaum, D. Kuckling, Chem. Soc. Rev. 42(17), 7391–7420 (2013)CrossRefGoogle Scholar
  6. 6.
    M.A.C. Stuart, W.T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, Nat. Mater. 9, 101–113 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Ali, T. Hirai, J. Mater. Sci. 46, 7681–7688 (2011)CrossRefGoogle Scholar
  8. 8.
    T.-A. Asoh, M. Matsusaki, T. Kaneko, M. Akashi, Adv. Mater. 20, 2080–2083 (2008)CrossRefGoogle Scholar
  9. 9.
    T.A. Asoh, M. Akashi, Chem. Commun. 24, 3548–3550 (2009)CrossRefGoogle Scholar
  10. 10.
    G. Filipcsei, J. Feher, M. Zrınyi, J. Mol. Struct. 554, 109–117 (2000)CrossRefGoogle Scholar
  11. 11.
    H. Kim, S. Kwon, Science 339, 150–151 (2013)CrossRefGoogle Scholar
  12. 12.
    I.Y. Konotop, I.R. Nasimova, M.V. Tamm, N.G. Rambidi, A.R. Khokhlov, Soft Matter 6, 1632 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 3, 1270 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 446, 778–781 (2007)CrossRefGoogle Scholar
  15. 15.
    T. Kimura, Y. Umehara, F. Kimura, Carbon 48, 4015–4018 (2010)CrossRefGoogle Scholar
  16. 16.
    H. Therien-Aubin, Z.L. Wu, Z. Nie, E. Kumacheva, J. Am. Chem. Soc. 135, 4834–4839 (2013)CrossRefGoogle Scholar
  17. 17.
    Z.L. Wu, M. Moshe, J. Greener, H. Therien-Aubin, Z. Nie, E. Sharon, E. Kumacheva, Nat. Commun. 4, 1586 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Liu, M. Takafuji, H. Ihara, M. Zhu, M. Yang, K. Gu, W. Guo, Soft Matter 8(12), 3295–3299 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Ladet, L. David, A. Domard, Nature 452, 76–79 (2008)CrossRefGoogle Scholar
  20. 20.
    I. Luzinov, S. Minko, V.V. Tsukruk, Prog. Polym. Sci. 29, 635–698 (2004)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, Z. Hu, Y. Li, J. Chem. Phys. 105, 3794 (1996)CrossRefGoogle Scholar
  22. 22.
    K. Haraguchi, T. Takehisa, Adv. Mater. 14, 1120 (2002)CrossRefGoogle Scholar
  23. 23.
    Y. Zheng, A. Hashidzume, A. Harada, Macromol. Rapid Commun. 34(13), 1062–1066 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 3, 603 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Zhang, J. Wu, J. Sun, Q. Zhou, Soft Matter 8, 5750–5752 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Nakahata, Y. Takashima, A. Hashidzume, A. Harada, Angew. Chem. Int. Ed. Engl. 52, 5731–5735 (2013)CrossRefGoogle Scholar
  27. 27.
    C. Ma, T. Li, Q. Zhao, X. Yang, J. Wu, Y. Luo, T. Xie, Adv. Mater. 32(26), 5665–5669 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Jeong, S.W. Kim, Y.H. Bae, Adv. Drug Deliv. Rev. 64, 154–162 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Tokuyama, M. Sasaki, S. Sakohara, Colloids Surf. A 273, 70–74 (2006)CrossRefGoogle Scholar
  30. 30.
    O. Kretschmann, S.W. Choi, M. Miyauchi, I. Tomatsu, A. Harada, H. Ritter, Angew. Chem. Int. Ed. 45, 4361–4365 (2006)CrossRefGoogle Scholar
  31. 31.
    J. Xu, S. Liu, J. Polym. Sci. A 47, 404–419 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2, 511 (2011)CrossRefGoogle Scholar
  33. 33.
    Q. Yan, J. Yuan, Z. Cai, Y. Xin, Y. Kang, Y. Yin, J. Am. Chem. Soc. 132, 9268–9270 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations