CuX (X = Cl, Br, I) Containing Coordination Polymers Built Upon Isomeric RSCH2C≡CCH2SR (R = p-Tolyl, Benzyl) Dithioether Ligands: First Example of a Luminescent (CuCl)n/Dithioether Network

  • Antoine Bonnot
  • Michael Knorr
  • Carsten Strohmann
  • Christopher Golz
  • Daniel Fortin
  • Pierre D. Harvey


The CuBr salt reacts with the acetylenic dithioether 1,4-bis(p-tolylthio)but-2-yne (L1) to generate the 1D [{Cu(μ2-Br)2Cu}(μ-p-MeC6H4SCH2C≡CCH2SC6H4Me-p)2] n coordination polymer (1), contrasting with the previously reported reaction with CuI, which provided a 2D network [{Cu43-I)4}(μ-p-MeC6H4SCH2C≡CCH2SC6H4Me-p)2] n . (JIOPM, 2014, 24, 190-200). The ribbons of 1 incorporate two different types of alternating centrosymmetric Cu(μ2-Br)2Cu rhomboids displaying loose Cu···Cu contacts of 2.9306(14) and 2.9662(14) Å. The reaction of CuI and CuBr with the isomeric dithioether ligand 1,4-bis(benzylthio)but-2-yne (L2) yields the isomorphous dinuclear 0D complexes [{Cu(μ2-X)2Cu}(μ-PhCH2SCH2C≡CCH2SCH2Ph)2] (2a: X = I; 2b: X = Br). These species represent the first examples of dinuclear [S2{Cu(μ2-X)2Cu}S2] complexes spanned by a dithioether ligand. In contrast, treatment of CuCl with L2 gives rise to the formation of an unusual 2D coordination polymer [{Cu22-Cl)(μ3-Cl)}(μ-PhCH2SCH2C≡CCH2SCH2Ph)] n (3), in which the layers are assembled both by dative Cu–S thioether bonds and organometallic Cu-π-acetylenic interactions via the triple bond of the L2 ligand. Furthermore, the Cu(I) centers are interconnected through μ2- and μ3-bound chloro ligands. Finally, thermal stability and photophysical proprieties were studied. This investigation demonstrated the interesting luminescent behavior of CuCl-containing coordination polymer (3).

Graphical Abstract


Copper halide Coordination polymer Alkyne Dithioether Crystal structure 



This research was supported by the CNRS, the Natural Sciences and Engineering Research Council of Canada (NSERC), le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), the Centre d’ Etudes des Matériaux Optiques et Photoniques de l’Université de Sherbrooke (CEMOPUS), and the Agence National de la Recherche (ANR) for a grant of a Research Chair of Excellence.

Supplementary material

10904_2015_204_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1848 kb)


  1. 1.
    E.N. Baker, P.M. Garrick, J. Chem. Soc. 5, 416–418 (1978)Google Scholar
  2. 2.
    L.L. Diaddario, E.R. Dockal, M.D. Glick, L.A. Ochrymowycz, D.B. Rorabacher, Inorg. Chem. 24, 356–363 (1985)CrossRefGoogle Scholar
  3. 3.
    J.R. Black, N.R. Champness, W. Levason, G. Reid, Inorg. Chem. 35, 4432–4438 (1996)CrossRefGoogle Scholar
  4. 4.
    J.Y. Lee, S. Lee, M. Jo, H. Lee, K.M. Park, S.S. Lee, Bull. Kor. Chem. Soc. 30, 96–964 (2009)Google Scholar
  5. 5.
    A. Bonnot, C. Strohmann, M. Knorr, P. Harvey, J. Clust. Sci. 25, 1–15 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Suenaga, M. Maekawa, T. Kuroda-Sowa, M. Munakata, H. Morimoto, N. Hiyama, S. Kitagawa, Anal. Sci. 13, 1047–1049 (1997)CrossRefGoogle Scholar
  7. 7.
    H.N. Peindy, F. Guyon, A. Khatyr, M. Knorr, C. Strohmann, Eur. J. Inorg. Chem. 13, 1823–1828 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Knorr, F. Guyon, M.M. Kubicki, Y. Rousselin, S.M. Aly, P.D. Harvey, New J. Chem. 35, 1184–1188 (2011)CrossRefGoogle Scholar
  9. 9.
    P.D. Harvey, A. Bonnot, A. Lapprand, C. Strohmann, M. Knorr, Macromol. Rapid Commun. 36 (2015). doi: 10.1002/marc.201400659
  10. 10.
    P.D. Harvey, M. Knorr, J. Cluster. Sci. 26, 411–459 (2015)CrossRefGoogle Scholar
  11. 11.
    N.R. Brooks, A.J. Blake, N.R. Champness, P.A. Cooke, P. Hubberstey, D.M. Proserpio, C. Wilson, M. Schröder, J. Chem. Soc. 5, 456–465 (2001)Google Scholar
  12. 12.
    J.Y. Lee, S.Y. Lee, W. Sim, K.-M. Park, J. Kim, S.S. Lee, J. Am. Chem. Soc. 130, 6902–6903 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Xie, L. Zhou, W. Feng, J. Wang, W. Chen, J. Mol. Struct. 921, 132–136 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Olbrich, G. Schmidt, U. Behrens, E. Weiss, J. Organomet. Chem. 418, 421–429 (1991)CrossRefGoogle Scholar
  15. 15.
    P. Schulte, G. Gröger, U. Behrens, J. Organomet. Chem. 584, 1–10 (1999)CrossRefGoogle Scholar
  16. 16.
    Y.-Q. Sun, C.-K. Tsang, Z. Xu, G. Huang, J. He, X.-P. Zhou, M. Zeller, A.D. Hunter, Cryst. Growth Des. 8, 1468–1470 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Knorr, F. Guyon, A. Khatyr, C. Däschlein, C. Strohmann, S.M. Aly, A.S. Abd-El-Aziz, D. Fortin, P.D. Harvey, Dalton Trans. 6, 948–955 (2009)CrossRefGoogle Scholar
  18. 18.
    S.M. Aly, A. Pam, A. Khatyr, M. Knorr, Y. Rousselin, M.M. Kubicki, J.O. Bauer, C. Strohmann, P.D. Harvey, J. Inorg. Organomet. Polym. Mater. 24, 190–200 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Knorr, A. Khatyr, A. Dini Aleo, A. El Yaagoubi, C. Strohmann, M.M. Kubicki, Y. Rousselin, S.M. Aly, D. Fortin, A. Lapprand, P.D. HarveyDini Aleo, Cryst. Growth Des. 14, 5373–5387 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Knorr, F. Guyon, A. Khatyr, C. Strohmann, M. Allain, S.M. Aly, A. Lapprand, D. Fortin, P.D. Harvey, Inorg. Chem. 51, 9917–9934 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Toyota, Y. Matsuda, S. Nagaoka, M. Oki, H. Akashi, Bull. Chem. Soc. Jpn. 69, 3115–3121 (1996)CrossRefGoogle Scholar
  22. 22.
    The synthesis of L2 has been previously reported using a different synthetic protocol, but no characterisation data were communicated: P.J. Duggan, J.L. Leng, D.R. Marshall, C.J.M. Stirling, J. Chem. Soc., Perkin Trans. 1, 933–939 (1983)Google Scholar
  23. 23.
    M. Knorr, F. Guyon, Luminescent oligomeric and polymeric copper coordination compounds assembled by thioether ligands, in Macromolecules containing metal and metal-like elements, vol 10: photophysics and photochemistry of metal-containing polymers, ed. by A.S.A.-E. Aziz, C.E. Carraher, P.D. Harvey, C.U. Pittmann, M. Zeldin (Wiley, Hoboken, NJ, New York, 2010) pp. 89–158CrossRefGoogle Scholar
  24. 24.
    P.D. Harvey, M. Knorr, Macromol. Rapid Commun. 31, 808–826 (2010)CrossRefGoogle Scholar
  25. 25.
    B. Noren, A. Oskarsson, Acta Chem. Scand. A41, 12–17 (1987)CrossRefGoogle Scholar
  26. 26.
    J. Ramos, V.M. Yartsev, S. Golhen, L. Ouahab, P. Delhaès, J. Mater. Chem. 7, 1313–1319 (1997)CrossRefGoogle Scholar
  27. 27.
    H.W. Yim, D. Rabinovich, K.C. Lam, J.A. Golen, A.L. Rheingold, Acta Cryst. E59, m556–m558 (2003)Google Scholar
  28. 28.
    M. Heller, W.S. Sheldrick, Z. Anorg, Allg. Chem. 630, 1869–1874 (2004)CrossRefGoogle Scholar
  29. 29.
    W. Lu, Z.-M. Yan, J. Dai, Y. Zhang, Q.-Y. Zhu, D.-X. Jia, W.-J. Guo, Eur. J. Inorg. Chem. 12, 2339–2345 (2005)CrossRefGoogle Scholar
  30. 30.
    T.H. Kim, G. Park, Y.W. Shin, K.-M. Park, M.Y. Choi, J. Kim, Bull. Kor. Chem. Soc. 29, 499–502 (2008)CrossRefGoogle Scholar
  31. 31.
    S.Y. Lee, S. Park, S.S. Lee, Inorg. Chem. 48, 11335–11341 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Jo, J. Seo, L.F. Lindoy, S.S. Lee, Dalton Trans. 31, 6096–6098 (2009)CrossRefGoogle Scholar
  33. 33.
    E.-J. Kang, S.Y. Lee, H. Lee, S.S. Lee, Inorg. Chem. 49, 7510–7520 (2010)CrossRefGoogle Scholar
  34. 34.
    P.R. Martinez-Alanis, V.M. Ugalde-Saldivar, I. Castillo, Eur. J. Inorg. Chem. 2, 212–220 (2011)CrossRefGoogle Scholar
  35. 35.
    H. Ryu, K.-M. Park, M. Ikeda, Y. Habata, S.S. Lee, Inorg. Chem. 53, 4029–4038 (2014)CrossRefGoogle Scholar
  36. 36.
    T. Kokoli, S. Olsson, P.M. Bjoremark, S. Persson, M. Hakansson, J. Organomet. Chem. 724, 17–22 (2013)CrossRefGoogle Scholar
  37. 37.
    C.R. Lucas, W. Liang, D.O. Miller, J.N. Bridson, Inorg. Chem. 36, 4508–4513 (1997)CrossRefGoogle Scholar
  38. 38.
    G. Gröger, U. Behrens, F. Olbrich, Organometallics 34, 3354–3360 (2000)CrossRefGoogle Scholar
  39. 39.
    M.R. Churchill, K.L. Kalra, Inorg. Chem. 13, 1427–1434 (1974)CrossRefGoogle Scholar
  40. 40.
    J.C. Dyason, L.M. Engelhardt, C. Pakawatchai, P.C. Healy, A.H. White, Aust. J. Chem. 38, 1243–1250 (1985)CrossRefGoogle Scholar
  41. 41.
    P. Schulte, G. Schmidt, C.-P. Kramer, A. Krebs, U. Behrens, J. Organomet. Chem. 530, 95–100 (1997)CrossRefGoogle Scholar
  42. 42.
    M.-C. Hu, Y. Wang, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, Y. Zhang, Inorg. Chem. 48, 1449–1468 (2009)CrossRefGoogle Scholar
  43. 43.
    D.C. Lai, J.I. Zink, Inorg. Chem. 32, 2556–2594 (1993)Google Scholar
  44. 44.
    K.M. Henline, C. Wang, R.D. Pike, J.C. Ahern, B. Sousa, H.H. Patterson, A.T. Kerr, C.L. Cahill, Cryst. Growth Des. 14, 1449–1458 (2014)CrossRefGoogle Scholar
  45. 45.
    W.S. Jenks, W. Lee, D. Shutters, J. Phys. Chem. 98, 2282–2289 (1994)CrossRefGoogle Scholar
  46. 46.
    A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 32, 115–119 (1999)CrossRefGoogle Scholar
  47. 47.
    G.M. Sheldrick, Acta Cryst. A64, 112–122 (2008)CrossRefGoogle Scholar
  48. 48.
    M.J. Frisch et al., Gaussian 03, revision C. 02 (Gaussian, Inc, Wallingford, 2004)Google Scholar
  49. 49.
    P. Hohenberg, W. Kohn, J. Phys. Rev. 136 B, 864–871 (1964)CrossRefGoogle Scholar
  50. 50.
    P. Hohenberg, W. Kohn, J. Phys. Rev. 140 A, 1133–1138 (1965)Google Scholar
  51. 51.
    R.G. Parr, W. Yang, Density-functional theory of atoms and molecules (Oxford University Press, New York, 1989)Google Scholar
  52. 52.
    D.R. Salahub, M.C. Zerner, The challenge of d and f electrons (American Chemical Society, Washington, DC, 1989)CrossRefGoogle Scholar
  53. 53.
    R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454–464 (1996)CrossRefGoogle Scholar
  54. 54.
    M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439–4449 (1998)CrossRefGoogle Scholar
  55. 55.
    R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218–8224 (1998)CrossRefGoogle Scholar
  56. 56.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37, 785–789 (1988)CrossRefGoogle Scholar
  57. 57.
    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200–206 (1989)CrossRefGoogle Scholar
  58. 58.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  59. 59.
    J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102, 939–947 (1980)CrossRefGoogle Scholar
  60. 60.
    J.M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, J. Am. Chem. Soc. 104, 2797–2803 (1982)CrossRefGoogle Scholar
  61. 61.
    W.J. Pietro, M.M. Francl, W.J. Hehre, D.J. Defrees, J.A. Pople, J.S. Binkley, J. Am. Chem. Soc. 104, 5039–5048 (1982)CrossRefGoogle Scholar
  62. 62.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 7, 359–378 (1986)CrossRefGoogle Scholar
  63. 63.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 861–879 (1987)CrossRefGoogle Scholar
  64. 64.
    K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 880–893 (1987)CrossRefGoogle Scholar
  65. 65.
    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839–845 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Antoine Bonnot
    • 1
  • Michael Knorr
    • 2
  • Carsten Strohmann
    • 3
  • Christopher Golz
    • 3
  • Daniel Fortin
    • 1
  • Pierre D. Harvey
    • 1
  1. 1.Département de ChimieUniversité de SherbrookeSherbrookeCanada
  2. 2.Institut UTINAM UMR CNRS 6213Université de Franche-ComtéBesançonFrance
  3. 3.Anorganische ChemieTechnische Universität DortmundDortmundGermany

Personalised recommendations