Recyclable Fe3O4@Tween20@Ag Nanocatalyst for Catalytic Degradation of Azo Dyes

  • U. Kurtan
  • A. Baykal
  • H. Sözeri


Silver nanoparticles supported on superparamagnetic iron oxide (SPION)-Tween20 nanocomposite were prepared by a combined polyol and chemical reduction routes. The morphology, composition and structure of Fe3O4@Tween20@Ag nanocatalyst were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy, energy dispersive X-ray spectroscopy, thermal gravimetric analyzer, and X-ray powder diffraction. In addition the magnetic properties were evaluated with vibrating sample magnetometry. It was found that Fe3O4@Tween20@Ag nanocatalyst could catalyze the degradation of various organic azo dyes and could easily be recovered from the reaction medium with external magnet. Also, the magnetic catalyst can be succesfully recycled and reused for at least five successive degradation cycles of methyl orange, methylene blue and Rhodamine B, confirming a high recycling efficiency. The cost effective and recyclable Fe3O4@Tween20@Ag nanocatalyst provide an novel nanomaterials architecture for environmental remediation applications.


Magnetic nanocatalyst Silver nanoparticle Catalytic activity Azo dyes 



This work was supported by Fatih University under BAP Grant no: P50021301-Y (3146), and in part by Swedish Research Council (VR-SRL 2013-6780).


  1. 1.
    H. Park, W. Choi, J. Photochem. Photobiol., A 159, 241–248 (2003)CrossRefGoogle Scholar
  2. 2.
    C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025–1032 (2005)CrossRefGoogle Scholar
  3. 3.
    F.I. Hai, K. Yamamoto, K. Fukushi, Crit. Rev. Environ. Sci. Technol. 37, 315–321 (2007)CrossRefGoogle Scholar
  4. 4.
    S.S. Hassan, M.N. Sirajuddin, A.R. Solangi, M.H. Agheem, Y. Junejo, N.H. Kalwar, Z.A. Tagar, J. Hazard. Mater. 190, 1030–1038 (2011)CrossRefGoogle Scholar
  5. 5.
    C. Bai, X. Xiong, W. Gong, D. Feng, M. Xian, Z. Ge, N. Xu, Desalination 278, 84–90 (2011)CrossRefGoogle Scholar
  6. 6.
    L. Xua, X. Li, J. Ma, Y. Wen, W. Liu, Appl. Catal. A 485, 91–98 (2014)CrossRefGoogle Scholar
  7. 7.
    L. Ma, R. Zhuo, H. Liu, D. Yu, M.J.X. Zhang, Y. Yang, Biochem. Eng. J. 82, 1–9 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Novotny, N. Dias, A. Kapanen, K. Malachova, M. Vandrovcova, M. Itavaara, Chemosphere 63, 1436–1442 (2006)CrossRefGoogle Scholar
  9. 9.
    X.M. Zhao, B.H. Zhang, K.L. Ai, G. Zhang, L.Y. Cao, X.J. Liu, H.M. Sun, H.S. Wang, L.H. Lu, J. Mater. Chem. 19, 5547–5557 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Asadullah, M. Asaduzzaman, M.S. Kabir, M.G. Mostofa, T. Miyazawa, J. Hazard. Mater. 174, 437–445 (2010)CrossRefGoogle Scholar
  11. 11.
    T. Snehalatha, K.C. Rajanna, P.K. Saiprakash, J. Chem. Educ. 74, 228–235 (1997)CrossRefGoogle Scholar
  12. 12.
    N. Gupta, H.P. Singh, R.K. Sharma, J. Mol. Catal. A 335, 248–252 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Lijuan, H. Jiang, A. Songsong, Z. Junwei, Z. Jinmin, R. Dong, Chin. J. Catal. 34, 1378–1385 (2013)CrossRefGoogle Scholar
  14. 14.
    W. Lua, R. Ning, X. Qin, Y. Zhang, G. Chang, S. Liu, Y. Luo, X. Sun, J. Hazard. Mater. 197, 320–326 (2011)CrossRefGoogle Scholar
  15. 15.
    U. Kurtan, A. Baykal, Mater. Res. Bull. 60, 79–87 (2014)CrossRefGoogle Scholar
  16. 16.
    D.H. Zhang, G.D. Li, J.X. Li, J.S. Chen, Chem. Commun. 29, 3414–3416 (2008)CrossRefGoogle Scholar
  17. 17.
    L. Ai, C. Zeng, Q. Wang, Catal. Commun. 14, 68–73 (2011)CrossRefGoogle Scholar
  18. 18.
    W. Jiang, Y. Zhou, Y. Zhang, S. Xuan, X. Gong, Dalton Trans. 41, 4594–4601 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Demirelli, E. Karaoğlu, A. Baykal, H. Sözeri, E. Uysal, J. Alloy. Compd. 582, 201–207 (2014)CrossRefGoogle Scholar
  20. 20.
    E. Karaoglu, U. Özel, C. Caner, A. Baykal, M.M. Summak, H. Sözeri, Mater. Res. Bull. 47, 4316–4321 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Tang, S. Zhang, X. Lia, X. Panga, H. Qiu, Mater. Chem. Phys. 148, 639–647 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Hu, Z. Wang, L. Pan, S. Zhao, S. Zhu, J. Phys. Chem. C 114, 7738–7746 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Manikandan, E. Hema, M. Durka, MA Selvi, T. Alagesan, SA Antony, J. Inorg. Organomet. Polym. (2015).  10.1007/s10904-014-0163-4
  24. 24.
    A. Manikandan, E. Hema, M. Durka, K. Seevakan, T. Alagesan, S.A. Antony, J. Supercond. Nov. Magn. (2015). doi: 10.1007/s10948-014-2945-x Google Scholar
  25. 25.
    A. Manikandan, M. Durka, K. Seevakan, S. Arul, Antony. J. Supercond. Nov. Magn. (2014). doi: 10.1007/s10948-014-2864-x Google Scholar
  26. 26.
    J.F. Guo, B. Ma, A. Yin, K. Fan, W.L. Da, Appl. Catal. B 101, 580–586 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Esir, A. Baykal, H. Sozeri, J. Supercond. Nov. Magn. 27, 2835–2839 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Demir, A. Baykal, H. Sözeri, R. Topkaya, Synth. Met. 187, 75–80 (2014)CrossRefGoogle Scholar
  29. 29.
    E. Karaoglu, A. Baykal, M. Senel, H. Sozeri, M.S. Toprak, Mater. Res. Bull. 47, 2480–2486 (2012)CrossRefGoogle Scholar
  30. 30.
    T. Özkaya, M.S. Toprak, A. Baykal, H. Kavas, Y. Köseoğlu, B. Aktaş, J. Alloys. Compd. 472, 18 (2009)CrossRefGoogle Scholar
  31. 31.
    A. Manikandan, J.J. Vijaya, J.A. Mary, L.J. Kennedy, A. Dinesh, J. Ind. Eng. Chem. 20, 2077–2085 (2014)CrossRefGoogle Scholar
  32. 32.
    Y.M. Wang, X. Cao, G.H. Liu, R.Y. Hong, Y.M. Chen, X.F. Chen, H.Z. Li, B. Xu, D.G. Wei, J. Magn. Magn. Mater. 323, 2953–2959 (2011)CrossRefGoogle Scholar
  33. 33.
    N.V. Jadhav, A.I. Prasad, A. Kumar, R. Mishra, S. Dhara, K.R. Babu, C.L. Prajapat, L. Misra, R.S. Ningthoujam, B.N. Pandey, R.K. Vatsa, Colloid Surf. B 108, 158–168 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Yuan, Y. Wang, S.M. Zhou, S. Lou, Chem. Eng. J. 175, 555–560 (2011)CrossRefGoogle Scholar
  35. 35.
    D.H. Han, J.P. Wang, H.L. Luo, J. Magn. Magn. Mater. 136, 176–185 (1994)CrossRefGoogle Scholar
  36. 36.
    S. Chikazumi, Physics of ferromagnetism, 2nd edn. (Clarendon Press, Oxford, 1997)Google Scholar
  37. 37.
    E. Blum, A. Cebers, M.M. Maiorov, Magnetic fluids (Walter de Gruyter, Berlin, 1997)Google Scholar
  38. 38.
    R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Phys. Rev. Lett. 77, 394–397 (1996)CrossRefGoogle Scholar
  39. 39.
    V.K. Vidhu, D. Philip, Micron 56, 54–62 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Peral, M. Trillas, D. Xavier, J. Chem. Educ. 72, 565–566 (1995)CrossRefGoogle Scholar
  41. 41.
    T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyac, A.E. Eroglu, T.B. Scott, K.R. Hallam, Chem. Eng. J. 172, 258–266 (2011)CrossRefGoogle Scholar
  42. 42.
    M.A. Rauf, M.A. Meetan, A. Khaleel, A. Ahmed, Chem. Eng. J. 157, 373–378 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Seralathan, P. Stevenson, S. Subramaniam, R. Raghavan, B. Pemaiah, A. Sivasubrmanian, A. Veerappan, Spectrochim. Acta 118, 349–355 (2014)CrossRefGoogle Scholar
  44. 44.
    G. Dang, Y. Shi, Z. Fu, W. Yang, Chin. J. Catal. 33, 651–658 (2012)CrossRefGoogle Scholar
  45. 45.
    X. Zhang, W. Jiang, X. Gong, Z. Zhang, J. Alloy. Compd. 508, 400–405 (2010)CrossRefGoogle Scholar
  46. 46.
    N.R. Jana, T. Pal, Langmuir 15, 3458–3466 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryFatih UniversityIstanbulTurkey
  2. 2.TUBITAK-UMENational Metrology InstituteGebzeTurkey

Personalised recommendations