Advertisement

Preparation of Poly(o-toluidine)/Nano Zirconium Dioxide (ZrO2)/Epoxy Composite Coating and Its Corrosion Resistance

  • Chuanbo Hu
  • Yansheng Zheng
  • Yongquan Qing
  • Falong Wang
  • Chunyan Mo
  • Qian Mo
Article

Abstract

Conducting polymers represent a promising application prospect in the field of metal corrosion control. In this investigation, poly(o-toluidine) (POT)/nano zirconium dioxide (ZrO2) composite were prepared by in situ polymerization of o-toluidine monomer in the presence of nano ZrO2 particles. Fourier transformation infrared spectroscopy, UV–visible spectroscopy, X-ray diffraction and Scanning electron microscopy were used to characterize the composition and the structure of the composite. POT/nano ZrO2 composite was mixed with epoxy resin (EP) through a solution blending method and the three components POT/nano ZrO2/epoxy composite coating was coated onto the surface of steel coupon, and its corrosion protective efficiency was studied by electrochemical measurements and immersion test in 3.5 % NaCl solution as corrosion environment and also compared with that of POT/epoxy composite coated steel, polyaniline (PANI)/epoxy composite coated steel and pure epoxy coated steel. According to the results, POT/nano ZrO2/epoxy composite coated steel has got higher corrosion resistance than that of POT/epoxy composite coated steel and PANI/epoxy composite coated steel. It was found that POT powders dispersed in the epoxy and polyamide system improved the barrier and electrochemical protection properties of epoxy coating and the addition of nano ZrO2 particles increased the tortuosity of the diffusion pathway of corrosion substances.

Keywords

Poly(o-toluidine)/nano ZrO2 composite Nano ZrO2 particles Corrosion protective efficiency Barrier Tortuosity 

Notes

Acknowledgments

The authors are grateful for the financial support of the Innovation Project of Guangxi Graduate Education (Grant No. YCSZ2014202), and the authors are also thankful to Guangxi University of Science and Technology providing the facilities for the research.

References

  1. 1.
    N.A. Ogurtsov, A.A. Pud, P. Kamarchik, G.S. Shapoval, Synth. Met. 143, 43 (2004)CrossRefGoogle Scholar
  2. 2.
    P. Pawar, A.B. Gaikwad, P.P. Patil, Electrochim. Acta 52, 5958 (2007)CrossRefGoogle Scholar
  3. 3.
    E. Kumar, P. Selvarajan, D. Muthuraj, J. Mater. Sci. 47, 7148 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)CrossRefGoogle Scholar
  5. 5.
    M.G. Hosseini, M. Jafari, R. Najjar, Surf. Coat. Technol. 206, 280 (2011)CrossRefGoogle Scholar
  6. 6.
    C. Dispenza, C.L. Presti, C. Belfiore, G. Spadaro, S. Piazza, Polymer 47, 961 (2006)CrossRefGoogle Scholar
  7. 7.
    H.L. Tai, Y.D. Jiang, G.Z. Xie, J.S. Yu, X. Chen, Z.H. Ying, Sens. Actuator B 129, 319 (2008)CrossRefGoogle Scholar
  8. 8.
    U. Kurtan, Y. Junejo, B. Ünal, A. Baykal, J. Inorg. Organomet. Polym. 23, 1089 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Talo, O. Forsén, S. Yläsaari, Synth. Met. 102, 1394 (1999)CrossRefGoogle Scholar
  10. 10.
    S.S. Azim, S. Sathiyanarayanan, G. Venkatachari, Prog. Org. Coat. 56, 154 (2006)CrossRefGoogle Scholar
  11. 11.
    B. Wessling, J. Posdorfer, Electrochim. Acta 44, 2139 (1999)CrossRefGoogle Scholar
  12. 12.
    P.J. Kinlen, V. Menon, Y. Ding, J. Electrochem. Soc. 146, 3690 (1999)CrossRefGoogle Scholar
  13. 13.
    P.J. Kinlen, Y. Ding, D.C. Silverman, Corrosion. 58, 490 (2002)CrossRefGoogle Scholar
  14. 14.
    M.V. Kulkarni, A.K. Viswanath, U.P. Mulik, Mater. Chem. Phys. 89, 1 (2005)CrossRefGoogle Scholar
  15. 15.
    P. Savitha, D.N. Sathyanarayana, Synth. Met. 145, 113 (2004)CrossRefGoogle Scholar
  16. 16.
    E. Hür, G. Bereket, Y. Şahin, Curr. Appl. Phys. 7, 597 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Benchikh, R. Aitout, L. Makhloufi, L. Benhaddad, B. Saidani, Desalination 249, 466 (2009)CrossRefGoogle Scholar
  18. 18.
    G. Gusmano, G. Montesperelli, M. Rapone, G. Padeletti, A. Cusmà, S. Kaciulis, A. Mezzi, R.D. Maggio, Surf. Coat. Technol. 201, 5822 (2007)CrossRefGoogle Scholar
  19. 19.
    J.H. Sui, W. Cai, Nucl. Instrum. Meth. B. 251, 402 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Behzadnasab, S.M. Mirabedini, K. Kabiri, S. Jamali, Corros. Sci. 53, 89 (2011)CrossRefGoogle Scholar
  21. 21.
    V. Shinde, S.R. Sainkar, P.P. Patil, Corros. Sci. 47, 1352 (2005)CrossRefGoogle Scholar
  22. 22.
    R.G. Lv, R. Tang, J.Q. Kan, Mater. Chem. Phys. 95, 294 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Ahmad, U. Riaz, M. Kashif, M.S. Khan, J. Inorg. Organomet. Polym. 22, 662 (2012)CrossRefGoogle Scholar
  24. 24.
    Y.J. He, Mater. Chem. Phys. 92, 134 (2005)CrossRefGoogle Scholar
  25. 25.
    Y. Ivanova, T.S. Gerganova, Y. Dimitriev, I.M.M. Salvado, Thin Solid Films 515, 271 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Zehhaf, E. Morallon, A. Benyoucef, J. Inorg. Organomet. Polym. 23, 1485 (2013)CrossRefGoogle Scholar
  27. 27.
    S.A. Kumar, A.P. Singh, P. Saini, F. Khatoon, S.K. Dhawan, J. Mater. Sci. 47, 2461 (2012)CrossRefGoogle Scholar
  28. 28.
    M.V. Kulkarni, A.K. Viswanath, Eur. Polym. J. 40, 379 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Shi, X. Wang, L.D. Lu, X.J. Yang, X.D. Wu, Synth. Met. 159, 2525 (2009)CrossRefGoogle Scholar
  30. 30.
    T.K. Sarma, A. Chattopadhyay, Langmuir 20, 4733 (2004)CrossRefGoogle Scholar
  31. 31.
    S.A. Kumar, K.S. Meenakshi, T.S.N. Sankaranarayanan, S. Srikanth, Prog. Org. Coat. 62, 285 (2008)CrossRefGoogle Scholar
  32. 32.
    A. Sakhri, F.X. Perrin, A. Benaboura, E. Aragon, S. Lamouri, Prog. Org. Coat. 72, 473 (2011)CrossRefGoogle Scholar
  33. 33.
    B. Wessling, Synth. Met. 85, 1313 (1997)CrossRefGoogle Scholar
  34. 34.
    T. Schauer, A. Joos, L. Dulog, C.D. Eisenbach, Prog. Org. Coat. 33, 20 (1998)CrossRefGoogle Scholar
  35. 35.
    F.C. Jain, J.J. Rosato, K.S. Kalonia, V.S. Agarwala, Corrosion 42, 700 (1986)CrossRefGoogle Scholar
  36. 36.
    A. Olad, A. Rashidzadeh, Prog. Org. Coat. 62, 293 (2008)CrossRefGoogle Scholar
  37. 37.
    F. Chen, P. Liu, ACS. Appl. Mater. Inter. 3, 2694 (2011)CrossRefGoogle Scholar
  38. 38.
    P.A. Kilmartin, L. Trier, G.A. Wright, Synth. Met. 131, 99 (2002)CrossRefGoogle Scholar
  39. 39.
    V. Karpakam, K. Kamaraj, S. Sathiyanarayanan, G. Venkatachari, S. Ramu, Electrochim. Acta 56, 2165 (2011)CrossRefGoogle Scholar
  40. 40.
    B.A. Bhanvase, S.H. Sonawane, Chem. Eng. J. 156, 177 (2010)CrossRefGoogle Scholar
  41. 41.
    A.T. Özyılmaz, G. Kardaş, M. Erbil, B. Yazıcı, Appl. Surf. Sci. 242, 97 (2005)CrossRefGoogle Scholar
  42. 42.
    T. Tüken, B. Yazıcı, M. Erbil, Appl. Surf. Sci. 252, 2311 (2006)CrossRefGoogle Scholar
  43. 43.
    S. Radhakrishnan, C.R. Siju, D. Mahanta, S. Patil, G. Madras, Electrochim. Acta 54, 1249 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chuanbo Hu
    • 1
  • Yansheng Zheng
    • 1
    • 2
  • Yongquan Qing
    • 1
  • Falong Wang
    • 1
  • Chunyan Mo
    • 1
  • Qian Mo
    • 1
  1. 1.College of Biological and Chemical EngineeringGuangxi University of Science and TechnologyLiuzhouPeople’s Republic of China
  2. 2.Lushan College of Guangxi University of Science and TechnologyLiuzhouPeople’s Republic of China

Personalised recommendations