Advertisement

DFT Investigation of Formaldehyde Adsorption Characteristics on MgO Nanotube

  • V. Nagarajan
  • R. Chandiramouli
Article

Abstract

The adsorption characteristics of formaldehyde on to MgO nanotube along inner surface, outer surface and terminating end are studied using DFT method with B3LYP/LanL2DZ basis set. The favorable adsorption site is discussed in terms of adsorbed energy which is found to be adsorption of C atom in HCHO with O atom in MgO along inner surface, outer surface and terminating end. The average energy gap variations for all the possible adsorption sites in MgO nanotube are reported. Mulliken population analysis confirms the transfers of electrons from MgO nanotube to HCHO. The conductivity of MgO base material is influenced by the energy gap variation when HCHO is adsorbed on to MgO nanotube. The result of the present study reveals that synthesizing MgO in nanotube form will enhance HCHO sensing characteristics.

Keywords

Magnesium oxide Nanotube Formaldehyde Adsorption Mulliken population HOMO–LUMO 

References

  1. 1.
    P. Clausa, H. Berndt, C. Mohr, J. Radnika, E.-J. Shinb, M.A. Keaneb, J. Catal. 192, 88 (2000)CrossRefGoogle Scholar
  2. 2.
    T. Nakayama, N. Ichikuni, S. Sato, F. Nozaki, Appl. Catal. A 158, 185 (1997)CrossRefGoogle Scholar
  3. 3.
    T.M. Souza, A.P. Luz, M.A.M. Britob, V.C. Pandolfelli, Ceram. Int. 40, 1699 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Huang, D.-Q. Li, Y.-J. Lin, M. Wei, D.G. Evans, X. Duan, J. Inorg. Biochem. 99, 986 (2005)CrossRefGoogle Scholar
  5. 5.
    Q. Shi, Y. Liu, Z. Gao, Q. Zhao, J. Mater. Sci. 43, 1438 (2008)CrossRefGoogle Scholar
  6. 6.
    Xin-Yao Yu, T. Luo, Y. Jia, Y.-X. Zhang, J.-H. Liu, X.-J. Huang, J. Phys. Chem. C 115, 22242 (2011)CrossRefGoogle Scholar
  7. 7.
    L. Ai, H. Yuea, J. Jianga, Nanoscale 4, 5401 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Wei, H. Chenb, X. Zhangb, J. Suob, Chin. J. Catal. 34, 1945 (2013)CrossRefGoogle Scholar
  9. 9.
    Z.G. Katarzyna, J. Sefcik, J. Colloid Interface Sci. 406, 51 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Tao, X. Cao, Y. Peng, Y. Liu, Sens. Actuators B 148, 292 (2010)CrossRefGoogle Scholar
  11. 11.
    T. Wang, Y. Xu, Q. Su, R. Yang, L. Wang, B. Liu, S. Shen, G. Jiang, W. Chen, S. Wang, Mater. Lett. 116, 332 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Gao, W. Zhang, H. Li, L. Lang, Z. Xu, Cryst. Growth Des. 8, 3785 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Zhan, Y. Bando, J. Hu, D. Golberg, Inorg. Chem. 43, 2462 (2004)CrossRefGoogle Scholar
  14. 14.
    D. Zhu, C. Zhenga, M. Wanga, Y. Liua, D. Chena, Z. Hea, L. Wena, W.Y. Cheungc, Mater. Chem. Phys. 124, 1146 (2010)CrossRefGoogle Scholar
  15. 15.
    J.-M. Cho, K.-H. Lee, C.I. Cheon, N.I. Cho, J.S. Kim, J. Eur. Ceram. Soc. 30, 481 (2010)CrossRefGoogle Scholar
  16. 16.
    K. Mageshwari, S.M. Sawanta, R. Sathyamoorthy, S.P. Pramod, Powder Technol. 249, 456 (2013)CrossRefGoogle Scholar
  17. 17.
    K.M. Eida, H.Y. Ammar, Appl. Surf. Sci. 257, 6049 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Lintuluoto, H. Nakatsuji, M. Hada, H. Kanai, Surf. Sci. 429, 133 (1999)CrossRefGoogle Scholar
  19. 19.
    R. Kakkar, P.N. Kapoor, K.J. Klabunde, J. Phys. Chem. B 108, 18140 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Yang, Y. Zhang, S. Huang, H. Liu, P. Wang, H. Tian, Appl. Surf. Sci. 258, 1429 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Giordano, J. Goniakowski, G. Pacchioni, Phys. Rev. B 64, 075417 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Miletic, J.L. Gland, K.C. Hass, W.F. Schneider, J. Phys. Chem. B 107, 157 (2003)CrossRefGoogle Scholar
  23. 23.
    M. Nayebzadeh, A.A. Peyghan, H. Soleymanabadi, Phys. E Low-Dimens. Syst. Nanostruct. 62, 48 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Lintuluoto, Y. Nakamura, J. Mol. Struct. Theo. Chem. 674, 207 (2004)CrossRefGoogle Scholar
  25. 25.
    J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi, Phys. E Low-Dimens. Syst. Nanostruct. 44, 546 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Sterrer, T. Risse, H.-J. Freund, Appl. Catal. A Gen. 307, 58 (2006)CrossRefGoogle Scholar
  27. 27.
    N.K. Nga, P.T.T. Hong, T.D. Lam, T.Q. Huy, J. Colloid Interface Sci. 398, 210 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Cao, J. Qu, F. Wei, H. Liu, W. Song, ACS Appl. Mater. Interface. 4, 4283 (2012)CrossRefGoogle Scholar
  29. 29.
    P. Tian, X. Han, G. Ning, H. Fang, J. Ye, W. Gong, Y. Lin, ACS Appl. Mater. Interfaces. 5, 12411 (2013)CrossRefGoogle Scholar
  30. 30.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D. Fox, Gaussian 09 Revision D.01 (2009)Google Scholar
  31. 31.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  32. 32.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993)CrossRefGoogle Scholar
  33. 33.
    P. Jeffrey Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)CrossRefGoogle Scholar
  34. 34.
    A.D. James, D. Kristin, A.R. Terry, Sens. Actuators B 80, 106 (2001)CrossRefGoogle Scholar
  35. 35.
    L. Zhanga, J. Zhaoa, H. Lua, L. Gong, L. Li, J. Zhenga, H. Li, Z. Zhua, Sens. Actuators B 160, 364 (2011)CrossRefGoogle Scholar
  36. 36.
    P.P. Galina, N.G. Vayssilov, B. Galabov, J. Mol. Catal. A Chem. 342–343, 67 (2011)Google Scholar
  37. 37.
    V. Nagarajan, R. Chandiramouli, Ceram. Int. (2014). doi: 10.1016/j.ceramint.2014.07.046 Google Scholar
  38. 38.
    S. Sriram, R. Chandiramouli, B.G. Jeyaprakash, Struct. Chem. 25, 389 (2014)CrossRefGoogle Scholar
  39. 39.
    M. Chen, R.F. Andrew, A.D. David, J. Phys. Chem. A 118, 3136 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Beheshtian, A.A. Peyghan, Z. Bagheri, Struct. Chem. 24, 1331 (2013)CrossRefGoogle Scholar
  41. 41.
    M.T. Baei, A.A. Peyghan, Z. Bagheri, Struct. Chem. 24, 1099 (2013)CrossRefGoogle Scholar
  42. 42.
    Z. Bagheri, M. Moradi, Struct. Chem. 25, 495 (2014)CrossRefGoogle Scholar
  43. 43.
    K.M. Eida, H.Y. Ammara, Appl. Surf. Sci. 258, 7689 (2012)CrossRefGoogle Scholar
  44. 44.
    V. Nagarajan, R. Chandiramouli, Struct. Chem. (2014). doi: 10.1007/s11224-014-0451-1 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Electrical & Electronics EngineeringSASTRA UniversityThanjavurIndia

Personalised recommendations