Skip to main content
Log in

Structure and Electronic States of Zinc-Doped Iron Oxide Nanotubes Prepared by a Surfactant-Assisted Sol–Gel Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

We report the doping of iron oxide nanotubes with zinc, and the characterization of the resulting zinc ferrite nanotubes. Gels were prepared by polycondensing iron nitrate nonahydrate and zinc nitrate hexahydrate on the surface of a self-assembled non-ionic surfactant in 1-propanol at 45 °C. Evaporation of the solvent within the gels at 120 °C led to the formation of tubular structures, as evidenced by transmission electron microscopy. The nanotubes had internal and external diameters of ~2–6 and 4–10 nm, respectively, and were ~50 nm long. X-ray diffraction and X-ray photoelectron spectroscopy indicated that the nanotubes possessed a spinel structure, and had a composition of Zn x Fe3−x O4, with x ranging from 0 to 0.66. Direct band gaps were evaluated from optical absorption spectra, using the Tauc plot method. The band gaps ranged from 2.4 (x = 0) to 2.0 eV (x = 0.27), thus narrowing upon doping with Zn. This was tentatively attributed to a widening of the band width, and the formation of sub-levels at octahedral B sites of the spinel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14, 1445 (2002)

    Article  CAS  Google Scholar 

  2. H. Tokudome, M. Miyauchi, Chem. Lett. 33, 1108 (2004)

    Article  CAS  Google Scholar 

  3. C.Y. Hsu, D.H. Lien, S.Y. Lu, C.Y. Chen, C.F. Kang, Y.L. Chueh, W.K. Hsu, J.H. He, ACS Nano 6, 6687 (2012)

    Article  CAS  Google Scholar 

  4. S. Cimitan, S. Albonetti, L. Forni, F. Peri, D. Lazzari, J. Colloid, Inerface Sci. 329, 73 (2009)

    Article  CAS  Google Scholar 

  5. B.H. Juárez, P.D. García, D. Golmayo, A. Blanco, C. López, Adv, Mater. 17, 2761 (2005)

  6. Q. Zhou, W. Chen, L. Xu, S. Peng, Sensors 13, 6171 (2013)

    Article  CAS  Google Scholar 

  7. A.K. Chandiran, M. Abdi-Jalebi, A. Yella, M.I. Dar, C. Yi, S.A. Shivashankar, M.K. Nazeeruddin, M. Grätzel, Nano Lett. 14, 1190 (2014)

    Article  CAS  Google Scholar 

  8. X.P. Shen, H.J. Liu, L. Pan, K.M. Chen, J.M. Hong, Z. Xu, Chem. Lett. 33, 1128 (2004)

    Article  CAS  Google Scholar 

  9. C.J. Jia, L.D. Sun, Z.G. Yan, L.P. You, F. Luo, X.D. Han, Y.C. Pang, Z. Zhang, C.H. Yan, Angew. Chem. Int. Ed. 44, 4328 (2005)

    Article  CAS  Google Scholar 

  10. R. Kato, T. Komatsu, J. Inorg. Organomet. Polym. 23, 167 (2013)

    Article  CAS  Google Scholar 

  11. B. Cheng, E.T. Samulski, J. Mater. Chem. 11, 2901 (2001)

    Article  CAS  Google Scholar 

  12. Y. Li, Y. Bando, D. Golberg, Adv. Mater. 15, 581 (2003)

    Article  CAS  Google Scholar 

  13. B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Chem. Mater. 9, 857 (1997)

    Article  CAS  Google Scholar 

  14. B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Chem. Mater. 9, 2544 (1997)

    Article  CAS  Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  16. C. Janáky, N.R. de Tacconi, W. Chanmanee, K. Rajeshwar, J. Phys. Chem. C 116, 19145 (2012)

    Article  Google Scholar 

  17. B. Cai, Y. Xing, Z. Yang, W.H. Zhang, J. Qiu, Energy Environ. Sci. 6, 1480 (2013)

    Article  CAS  Google Scholar 

  18. E.W. McFarland, H. Metiu, Chem. Rev. 113, 4391 (2013)

  19. C.W. Lai, J.C. Juan, W.B. Ko, S.B.A. Hamid, Int. J. Photoenergy 2014, 15 (2014)

  20. C. Boxall, G. Kelsall, Z. Zhang, J. Chem. Soc., Faraday Trans. 92, 791 (1996)

    Article  CAS  Google Scholar 

  21. H. Liu, L. Yu, W. Vhen, Y. Li, J. Nanomaterials 2012, 235879 (2012)

  22. N. Lee, T. Hyeon, Chem. Soc. Rev. 41, 2575 (2012)

    Article  CAS  Google Scholar 

  23. M.A. Valenzuela, P. Bosch, J.J. Becerrill, O. Quiroz, A.I. Páez, J. Photochem. Photobio. A: Chem. 148, 177 (2002)

    Article  CAS  Google Scholar 

  24. X. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, G. Chen, Chemosphere 82, 581 (2011)

    Article  CAS  Google Scholar 

  25. X. Liu, H. Zheng, Y. Li, W. Zhang, J. Mater. Chem. C 1, 329–337 (2013)

    Article  CAS  Google Scholar 

  26. T. Nunome, H. Irie, N. Sakamoto, O. Sakurai, K. Shinozaki, H. Suzuki, N. Wakiya, J. Ceram. Soc. Jpn. 121, 26–30 (2013)

  27. A. Šutka, R. Rärna, J. Kleperis, T. Käämbre, I. Pavlovska, V. Korsaks, K. Malnieks, L. Grinberga, V. Kisand, Phys. Scr. 89, 044011 (2014)

    Article  Google Scholar 

  28. N. Kislov, S.S. Srinivasan, Y. Emirov, E.K. Stefanakos, Mater. Sci. Engin. B 153, 70 (2008)

    Article  CAS  Google Scholar 

  29. S. Bandow, Y. Shiraki, Mater. Res. Soc. Symp. Proc. 1659 (2014), doi: 10.1557/opl.2014.133

  30. J.P. Jolivet, C. Chanéac, E. Tronc, Chem. Commun. 5, 481 (2004)

  31. P.M. Zélis, G.A. Pasquevich, S.J. Stewart, M.B. Fernándes van Raap, J. Aphesteguy, I.J. Bruvera, C. Laborde, B. Pianciola, S. Jacobo, F.H. Sánchez, J. Phys. D 46, 125006 (2013)

    Article  Google Scholar 

  32. C.D. Wagner, W.M. Riggs, L.E. Davis, L.F. Moulder, G.E. Muilenberg, Hand Book of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Waltham, 1979)

    Google Scholar 

  33. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)

    Article  CAS  Google Scholar 

  34. H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Appl. Catalysis B 68, 1 (2006)

    Article  CAS  Google Scholar 

  35. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Inter. Nano Lett. 3, 30 (2013)

    Article  Google Scholar 

  36. K. Wongsaprom, R. Bornphotsawatkun, E. Swatsitang, Appl. Phys. A 114, 373 (2014)

    Article  CAS  Google Scholar 

  37. Z.R. Marand, N. Shahtahmasbi, M.R. Roknabadi, M. Hosseindokht, M.B. Mohagheghi, M.H.R. Farimani, R. Etefagh, Proceedings of 4th International Conference Nanostructures (ICNS4), p. 211 (2012)

  38. P.M. Zélis, G.A. Pasquevich, S.J. Stewart, M.B.F. Raap, J. Aphesteguy, I.J. Bruvera, C. Laborde, B. Pianciola, S. Jacobo, F.H. Sánchez, J. Phys. D Appl. Phys. 46, 125006 (2013)

    Article  Google Scholar 

  39. B. Jeyadevan, K. Tohji, K. Nakatsuka, J. Appl. Phys. 76, 6325 (1994)

    Article  CAS  Google Scholar 

  40. H. Ehrhardt, S.J. Campbell, M. Hofmann, Scr. Materialia 48, 1141 (2003)

    Article  CAS  Google Scholar 

  41. C.E.R. Torres, G.A. Pasquevich, P.M. Zélis, F. Golmar, S.P. Heluani, S.K. Nayak, W.A. Adeagbo, W. Hergert, M. Hoffmann, A. Ernst, P. Esquinazi, S.J. Stewart, Phys. Rev. B 89, 104411 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Grants-in-Aid for Scientific Research (C) no. 25390021 of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). This study was also supported by the promotion of advanced research project, Nano Carbon Research Center, Meijo University, Nagoya, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Bandow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosugi, Y., Bandow, S. Structure and Electronic States of Zinc-Doped Iron Oxide Nanotubes Prepared by a Surfactant-Assisted Sol–Gel Method. J Inorg Organomet Polym 24, 933–939 (2014). https://doi.org/10.1007/s10904-014-0072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0072-6

Keywords

Navigation