Structure and Electronic States of Zinc-Doped Iron Oxide Nanotubes Prepared by a Surfactant-Assisted Sol–Gel Method

  • Yuta Kosugi
  • Shunji Bandow


We report the doping of iron oxide nanotubes with zinc, and the characterization of the resulting zinc ferrite nanotubes. Gels were prepared by polycondensing iron nitrate nonahydrate and zinc nitrate hexahydrate on the surface of a self-assembled non-ionic surfactant in 1-propanol at 45 °C. Evaporation of the solvent within the gels at 120 °C led to the formation of tubular structures, as evidenced by transmission electron microscopy. The nanotubes had internal and external diameters of ~2–6 and 4–10 nm, respectively, and were ~50 nm long. X-ray diffraction and X-ray photoelectron spectroscopy indicated that the nanotubes possessed a spinel structure, and had a composition of Zn x Fe3−x O4, with x ranging from 0 to 0.66. Direct band gaps were evaluated from optical absorption spectra, using the Tauc plot method. The band gaps ranged from 2.4 (x = 0) to 2.0 eV (x = 0.27), thus narrowing upon doping with Zn. This was tentatively attributed to a widening of the band width, and the formation of sub-levels at octahedral B sites of the spinel structure.


Iron oxide Zinc doped iron oxide Nanotube Sol–Gel Band gap 



The authors acknowledge financial support from the Grants-in-Aid for Scientific Research (C) no. 25390021 of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). This study was also supported by the promotion of advanced research project, Nano Carbon Research Center, Meijo University, Nagoya, Japan.


  1. 1.
    J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14, 1445 (2002)CrossRefGoogle Scholar
  2. 2.
    H. Tokudome, M. Miyauchi, Chem. Lett. 33, 1108 (2004)CrossRefGoogle Scholar
  3. 3.
    C.Y. Hsu, D.H. Lien, S.Y. Lu, C.Y. Chen, C.F. Kang, Y.L. Chueh, W.K. Hsu, J.H. He, ACS Nano 6, 6687 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Cimitan, S. Albonetti, L. Forni, F. Peri, D. Lazzari, J. Colloid, Inerface Sci. 329, 73 (2009)CrossRefGoogle Scholar
  5. 5.
    B.H. Juárez, P.D. García, D. Golmayo, A. Blanco, C. López, Adv, Mater. 17, 2761 (2005)Google Scholar
  6. 6.
    Q. Zhou, W. Chen, L. Xu, S. Peng, Sensors 13, 6171 (2013)CrossRefGoogle Scholar
  7. 7.
    A.K. Chandiran, M. Abdi-Jalebi, A. Yella, M.I. Dar, C. Yi, S.A. Shivashankar, M.K. Nazeeruddin, M. Grätzel, Nano Lett. 14, 1190 (2014)CrossRefGoogle Scholar
  8. 8.
    X.P. Shen, H.J. Liu, L. Pan, K.M. Chen, J.M. Hong, Z. Xu, Chem. Lett. 33, 1128 (2004)CrossRefGoogle Scholar
  9. 9.
    C.J. Jia, L.D. Sun, Z.G. Yan, L.P. You, F. Luo, X.D. Han, Y.C. Pang, Z. Zhang, C.H. Yan, Angew. Chem. Int. Ed. 44, 4328 (2005)CrossRefGoogle Scholar
  10. 10.
    R. Kato, T. Komatsu, J. Inorg. Organomet. Polym. 23, 167 (2013)CrossRefGoogle Scholar
  11. 11.
    B. Cheng, E.T. Samulski, J. Mater. Chem. 11, 2901 (2001)CrossRefGoogle Scholar
  12. 12.
    Y. Li, Y. Bando, D. Golberg, Adv. Mater. 15, 581 (2003)CrossRefGoogle Scholar
  13. 13.
    B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Chem. Mater. 9, 857 (1997)CrossRefGoogle Scholar
  14. 14.
    B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Chem. Mater. 9, 2544 (1997)CrossRefGoogle Scholar
  15. 15.
    S. Iijima, Nature 354, 56 (1991)CrossRefGoogle Scholar
  16. 16.
    C. Janáky, N.R. de Tacconi, W. Chanmanee, K. Rajeshwar, J. Phys. Chem. C 116, 19145 (2012)CrossRefGoogle Scholar
  17. 17.
    B. Cai, Y. Xing, Z. Yang, W.H. Zhang, J. Qiu, Energy Environ. Sci. 6, 1480 (2013)CrossRefGoogle Scholar
  18. 18.
    E.W. McFarland, H. Metiu, Chem. Rev. 113, 4391 (2013)Google Scholar
  19. 19.
    C.W. Lai, J.C. Juan, W.B. Ko, S.B.A. Hamid, Int. J. Photoenergy 2014, 15 (2014) Google Scholar
  20. 20.
    C. Boxall, G. Kelsall, Z. Zhang, J. Chem. Soc., Faraday Trans. 92, 791 (1996)CrossRefGoogle Scholar
  21. 21.
    H. Liu, L. Yu, W. Vhen, Y. Li, J. Nanomaterials 2012, 235879 (2012)Google Scholar
  22. 22.
    N. Lee, T. Hyeon, Chem. Soc. Rev. 41, 2575 (2012)CrossRefGoogle Scholar
  23. 23.
    M.A. Valenzuela, P. Bosch, J.J. Becerrill, O. Quiroz, A.I. Páez, J. Photochem. Photobio. A: Chem. 148, 177 (2002)CrossRefGoogle Scholar
  24. 24.
    X. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, G. Chen, Chemosphere 82, 581 (2011)CrossRefGoogle Scholar
  25. 25.
    X. Liu, H. Zheng, Y. Li, W. Zhang, J. Mater. Chem. C 1, 329–337 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Nunome, H. Irie, N. Sakamoto, O. Sakurai, K. Shinozaki, H. Suzuki, N. Wakiya, J. Ceram. Soc. Jpn. 121, 26–30 (2013)Google Scholar
  27. 27.
    A. Šutka, R. Rärna, J. Kleperis, T. Käämbre, I. Pavlovska, V. Korsaks, K. Malnieks, L. Grinberga, V. Kisand, Phys. Scr. 89, 044011 (2014)CrossRefGoogle Scholar
  28. 28.
    N. Kislov, S.S. Srinivasan, Y. Emirov, E.K. Stefanakos, Mater. Sci. Engin. B 153, 70 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Bandow, Y. Shiraki, Mater. Res. Soc. Symp. Proc. 1659 (2014), doi:  10.1557/opl.2014.133
  30. 30.
    J.P. Jolivet, C. Chanéac, E. Tronc, Chem. Commun. 5, 481 (2004)Google Scholar
  31. 31.
    P.M. Zélis, G.A. Pasquevich, S.J. Stewart, M.B. Fernándes van Raap, J. Aphesteguy, I.J. Bruvera, C. Laborde, B. Pianciola, S. Jacobo, F.H. Sánchez, J. Phys. D 46, 125006 (2013)CrossRefGoogle Scholar
  32. 32.
    C.D. Wagner, W.M. Riggs, L.E. Davis, L.F. Moulder, G.E. Muilenberg, Hand Book of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Waltham, 1979)Google Scholar
  33. 33.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)CrossRefGoogle Scholar
  34. 34.
    H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Appl. Catalysis B 68, 1 (2006)CrossRefGoogle Scholar
  35. 35.
    S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Inter. Nano Lett. 3, 30 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Wongsaprom, R. Bornphotsawatkun, E. Swatsitang, Appl. Phys. A 114, 373 (2014)CrossRefGoogle Scholar
  37. 37.
    Z.R. Marand, N. Shahtahmasbi, M.R. Roknabadi, M. Hosseindokht, M.B. Mohagheghi, M.H.R. Farimani, R. Etefagh, Proceedings of 4th International Conference Nanostructures (ICNS4), p. 211 (2012)Google Scholar
  38. 38.
    P.M. Zélis, G.A. Pasquevich, S.J. Stewart, M.B.F. Raap, J. Aphesteguy, I.J. Bruvera, C. Laborde, B. Pianciola, S. Jacobo, F.H. Sánchez, J. Phys. D Appl. Phys. 46, 125006 (2013)CrossRefGoogle Scholar
  39. 39.
    B. Jeyadevan, K. Tohji, K. Nakatsuka, J. Appl. Phys. 76, 6325 (1994)CrossRefGoogle Scholar
  40. 40.
    H. Ehrhardt, S.J. Campbell, M. Hofmann, Scr. Materialia 48, 1141 (2003)CrossRefGoogle Scholar
  41. 41.
    C.E.R. Torres, G.A. Pasquevich, P.M. Zélis, F. Golmar, S.P. Heluani, S.K. Nayak, W.A. Adeagbo, W. Hergert, M. Hoffmann, A. Ernst, P. Esquinazi, S.J. Stewart, Phys. Rev. B 89, 104411 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMeijo UniversityNagoyaJapan
  2. 2.Department of Applied ChemistryMeijo UniversityNagoyaJapan

Personalised recommendations