Low-Power Upconversion in Poly(Mannitol-Sebacate) Networks with Tethered Diphenylanthracene and Palladium Porphyrin

  • Soo-Hyon Lee
  • Águeda Sonseca
  • Roberto Vadrucci
  • Enrique Giménez
  • E. Johan Foster
  • Yoan C. Simon


Efforts to fabricate low-power upconverting solid-state systems have rapidly increased in the past decade because of their possible application in several fields such as bio-imaging, drug delivery, solar harvesting or displays. The synthesis of upconverting cross-linked polyester rubbers with covalently tethered chromophores is presented here. Cross-linked films were prepared by reacting a poly(mannitol-sebacate) pre-polymer with 9,10-bis(4-hydroxymethylphenyl) anthracene (DPA-(CH2OH)2) and palladium mesoporphyrin IX. These chromophores served as emitters and sensitizers, respectively, and through a cascade of photophysical events, resulted in an anti-Stokes shifted emission. Indeed, blue emission (~440 nm) of these solid materials was detected upon excitation at 543 nm with a green laser and the power dependence of integrated upconverted intensity versus excitation was examined. The new materials display upconversion at power densities as low as 32 mW/cm2, and do not display phase de-mixing, which has been identified as an obstacle in rubbery blends comprising untethered chromophores.

Graphical Abstract

ToC Low-power upconverting cross-linked polyester with tethered chromophores was synthesized by polycondensation of poly(mannitol-sebacate) pre-polymers with 9,10-bis(4-hydroxymethylphenyl) anthracene and palladium mesoporphyrin IX. Upconverted blue fluorescence (440 nm) of these solid materials is detected upon excitation at 543 nm with a green laser and the power dependence of integrated upconverted intensity versus excitation is examined in this study.


Light upconversion Triplet–triplet annihilation Poly(mannitol-sebacate)s Polycondensation Upconverting elastomer 



The authors are thankful for the financial support of the Swiss National Science Foundation (200021_13540/1 and 200020_152968), Spanish Ministry of Economy and Competitiveness (Project MAT2010/21494-C03) and the Adolphe Merkle Foundation. The authors thank Prof. Christoph Weder for his help and support.

Supplementary material

10904_2014_63_MOESM1_ESM.docx (337 kb)
Absorption and fluorescence emission spectra, TGA, and DSC data.Supplementary material 1 (DOCX 336 kb)


  1. 1.
    C. A. Parker, C. G. Hatchard. P. Chem. Soc. London, 386–387 (1962)Google Scholar
  2. 2.
    Y.C. Simon, C. Weder, J. Mater. Chem. 22, 20817–20830 (2012)CrossRefGoogle Scholar
  3. 3.
    J.Z. Zhao, S.M. Ji, H.M. Guo, Rsc Adv. 1, 937–950 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Reinhard, R. Valiente, H.U. Gudel, J. Phys. Chem. B 106, 10051–10057 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Haase, H. Schafer, Angew. Chem. Int. Edit. 50, 5808–5829 (2011)CrossRefGoogle Scholar
  6. 6.
    W.H. Wu, J.Z. Zhao, J.F. Sun, S. Guo, J. Org. Chem. 77, 5305–5312 (2012)CrossRefGoogle Scholar
  7. 7.
    T.T. Zhao, X.Q. Shen, L. Li, Z.P. Guan, N.Y. Gao, P.Y. Yuan, S.Q. Yao, Q.H. Xu, G.Q. Xu, Nanoscale 4, 7712–7719 (2012)CrossRefGoogle Scholar
  8. 8.
    C. Cepraga, T. Gallavardin, S. Marotte, P.H. Lanoe, J.C. Mulatier, F. Lerouge, S. Parola, M. Lindgren, P.L. Baldeck, J. Marvel, O. Maury, C. Monnereau, A. Favier, C. Andraud, Y. Leverrier, M.T. Charreyre, Polym. Chem. 4, 61–67 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Qian, D. Wang, F.H. Cai, Q.Q. Zhan, Y.L. Wang, S.L. He, Biomaterials 33, 4851–4860 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, New J. Phys. 10, 013007 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, Phys. Rev. Lett. 97, 143903 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Samoc, A. Samoc, B. Luther-Davies, Opt. Express 11, 1787–1792 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, F. Meinardi, Phys. Rev. B 78(195112), 1–5 (2008)Google Scholar
  14. 14.
    A. Monguzzi, R. Tubino, F. Meinardi, Phys. Rev. B 77, 155122-1-4 (2008)Google Scholar
  15. 15.
    T.N. Singh-Rachford, R.R. Islangulov, F.N. Castellano, J. Phys. Chem. A 112, 3906–3910 (2008)CrossRefGoogle Scholar
  16. 16.
    C. Wohnhaas, A. Turshatov, V. Mailander, S. Lorenz, S. Baluschev, T. Miteva, K. Landfester, Macromol. Biosci. 11, 772–778 (2011)CrossRefGoogle Scholar
  17. 17.
    R.R. Islangulov, J. Lott, C. Weder, F.N. Castellano, J. Am. Chem. Soc. 129, 12652–12653 (2007)CrossRefGoogle Scholar
  18. 18.
    Y.C. Simon, C. Weder, Chimia 66, 878 (2012)CrossRefGoogle Scholar
  19. 19.
    Y.C. Simon, S. Bai, M.K. Sing, H. Dietsch, M. Achermann, C. Weder, Macromol. Rapid Commun. 33, 498–502 (2012)CrossRefGoogle Scholar
  20. 20.
    S.H. Lee, J.R. Lott, Y.C. Simon, C. Weder, J. Mater. Chem. C 1, 5142–5148 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Baluschev, P.E. Keivanidis, G. Wegner, J. Jacob, A.C. Grimsdale, K. Mullen, T. Miteva, A. Yasuda, G. Nelles, Appl. Phys. Lett. 86, 1–3 (2005)Google Scholar
  22. 22.
    S. Baluschev, J. Jacob, Y.S. Avlasevich, P.E. Keivanidis, T. Miteva, A. Yasuda, G. Nelles, A.C. Grimsdale, K. Mullen, G. Wegner, ChemPhysChem 6, 1250–1253 (2005)CrossRefGoogle Scholar
  23. 23.
    P.C. Boutin, K.P. Ghiggino, T.L. Kelly, R.P. Steer, J. Phys. Chem. Lett. 4, 4113–4118 (2013)CrossRefGoogle Scholar
  24. 24.
    C.A. Sundback, J.Y. Shyu, Y.D. Wang, W.C. Faquin, R.S. Langer, J.P. Vacanti, T.A. Hadlock, Biomaterials 26, 5454–5464 (2005)CrossRefGoogle Scholar
  25. 25.
    Z.J. Sun, C. Chen, M.Z. Sun, C.H. Ai, X.L. Lu, Y.F. Zheng, B.F. Yang, D.L. Dong, Biomaterials 30, 5209–5214 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Mahdavi, L. Ferreira, C. Sundback, J.W. Nichol, E.P. Chan, D.J.D. Carter, C.J. Bettinger, S. Patanavanich, L. Chignozha, E. Ben-Joseph, A. Galakatos, H. Pryor, I. Pomerantseva, P.T. Masiakos, W. Faquin, A. Zumbuehl, S. Hong, J. Borenstein, J. Vacanti, R. Langer, J.M. Karp, Proc. Natl. Acad. Sci. USA 105, 2307–2312 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Sonseca, S. Camarero-Espinosa, L. Peponi, C. Weder, E.J. Foster, J.M. Kenny, E. Giménez, J. Polym. Sci. Part A. (2014). doi: 10.1002/pola.27367
  28. 28.
    R. Vadrucci, C. Weder, Y.C. Simon, J. Mater. Chem. C 2, 2837–2841 (2014)CrossRefGoogle Scholar
  29. 29.
    F.A. Lara, U. Lins, G.H. Bechara, P.L. Oliveira, J. Exp. Biol. 208, 3093–3101 (2005)CrossRefGoogle Scholar
  30. 30.
    R. Maliger, P.J. Halley, J.J. Cooper-White, J. Appl. Polym. Sci. 127, 3980–3986 (2013)CrossRefGoogle Scholar
  31. 31.
    S. H. Lee, M. A. Ayer, R. Vadrucci, C. Weder, Y. C. Simon, Polym. Chem. (2014)Google Scholar
  32. 32.
    T.W. Schmidt, Y.Y. Cheng, B. Fuckel, T. Khoury, R.G.C.R. Clady, M.J.Y. Tayebjee, N.J. Ekins-Daukes, M.J. Crossley, J. Phys. Chem. Lett. 1, 1795–1799 (2010)CrossRefGoogle Scholar
  33. 33.
    R. R. Islangulov, T. N. Singh, J. Lott, C. Weder, F. N. Castellano. Abstr. Pap. Am. Chem. Soc. 235 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Soo-Hyon Lee
    • 1
  • Águeda Sonseca
    • 2
  • Roberto Vadrucci
    • 1
  • Enrique Giménez
    • 2
  • E. Johan Foster
    • 3
  • Yoan C. Simon
    • 1
  1. 1.Adolphe Merkle InstituteUniversity of FribourgMarlySwitzerland
  2. 2.Instituto de Tecnología de MaterialesUniversidad Politécnica de ValenciaValenciaSpain
  3. 3.Department of Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations