A Novel Co(II) Coordination Polymer Assembled from V-shaped 2,3,2’,3’-Thiodiphthalic Acid and N-donor Ancillary Ligand: Syntheses, Structure and Properties



A novel coordination polymer {[Co2(tdpa)(bpe)1.5(H2O)]·(bpe)0.5·(H2O)} n (1) has been hydrothermally synthesized through the reaction of 2,3,2’,3’-thiodiphthalic acid (H4tdpa) with divalent cobalt salt in the presence of ancillary nitrogen ligand (bpe = trans-1,2-bis(4-pyridyl)ethene) and characterized by IR spectra, elemental analysis and single crystal X-ray diffraction. Due to various coordination modes and conformations of the versatile 2,3,2’,3’-thiodiphthalic acid ligand, the complex exhibits structural and dimensional novelty. In complex 1, metal–organic ribbons (Co-tdpa) are connected together through bpe ligands to generate a three-dimensional (3D) metal–organic framework. The structure of 1 can be described as a (3,6)-connected network with a Schläfli symbol of (42·6)(44·610·8) topology. The thermal stability of the complex 1 was studied by thermal gravimetric analyses (TGA), and the UV−vis absorption property of complex 1 was also investigated.


2 3 2’ 3’-thiodiphthalic acid coordination polymer thermal stability UV−vis 



We gratefully acknowledge financial support by the National Natural Science Foundation of China (No. 20901070 and No. 21371153), Program for Science & Technology Innovation Talents in Universities of Henan Province (NO. 13HASTIT008), and Zhengzhou University (P. R. China).


  1. 1.
    B. Moulton, M.J. Zaworoko, J. Chem. Rev. 101, 1629 (2001)CrossRefGoogle Scholar
  2. 2.
    L. Carlucci, G. Ciani, D.M. Proserpio, Coord. Chem. Rev. 246, 247 (2003)CrossRefGoogle Scholar
  3. 3.
    V.A. Blatov, L. Carlucci, G. Ciani, D.M. Proserpio, Cryst. Eng. Comm. 6, 377 (2004)CrossRefGoogle Scholar
  4. 4.
    D. Bradshaw, J.B. Claridge, E.J. Cussen, T.J. Prior, M.J. Rosseinsky, J. Acc. Chem. Res. 38, 273 (2005)CrossRefGoogle Scholar
  5. 5.
    N.W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O.M. Yaghi, Acc. Chem. Res. 38, 176 (2005)CrossRefGoogle Scholar
  6. 6.
    S.R. Batten, R. Robson, Angew. Chem., Int. Ed. 37, 1460 (1998)CrossRefGoogle Scholar
  7. 7.
    S.L. James, Chem. Soc. Rev. 32, 276 (2003)CrossRefGoogle Scholar
  8. 8.
    L. Pan, M.B. Sander, X.-Y Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J. K. Johnson. J. Am. Chem. Soc. 126, 1308 (2004)CrossRefGoogle Scholar
  9. 9.
    O.R. Evans, W. Lin, Acc. Chem. Res. 35, 511 (2002)CrossRefGoogle Scholar
  10. 10.
    J.-D. Leng, J.-L. Liu, Y-Zh Zheng, L. Ungur, L.F. Chibotaru, F-Sh Guo, M.-L. Tong, Chem. Commun. 49, 158 (2013)CrossRefGoogle Scholar
  11. 11.
    I. Mihalcea, N. Henry, N. Clavier, N. Dacheux, T. Loiseau, Inorg. Chem. 50, 6243 (2011)CrossRefGoogle Scholar
  12. 12.
    C.Y. Wang, Z.M. Wilseck, R.M. Supkowski, R.L. LaDuca, Cryst. Eng. Comm. 13, 1391 (2011)CrossRefGoogle Scholar
  13. 13.
    Zh-G Gu, Y.-P. Cai, H.-C. Fang, Zh-Y Zhou, P.K. Thallapally, J. Tian, J. Liu, G.J. Exarhos, Chem. Commun. 46, 5373 (2010)CrossRefGoogle Scholar
  14. 14.
    N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, J. Am. Chem. Soc. 127, 1504 (2005)CrossRefGoogle Scholar
  15. 15.
    G.-B. Li, J.-M. Liu, Y.-P. Cai, C.-Y. Su, Cryst. Growth Des. 11, 2763 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Su, S.-Q. Zang, Y.-Z. Li, H-Zh Zhu, Q.-J. Meng, Cryst. Growth Des. 7, 1277 (2007)CrossRefGoogle Scholar
  17. 17.
    J.-B. Li, X.-Y. Dong, L.-H. Cao, S.-Q. Zang, T.C.W. Mak, Cryst. Eng. Comm. 14, 4444 (2012)CrossRefGoogle Scholar
  18. 18.
    S.-Q. Zang, Y. Su, Y-Zh Li, Zh-P Ni, H-Zh Zhu, Q.-J. Meng, Inorg. Chem. 45, 3855 (2006)CrossRefGoogle Scholar
  19. 19.
    S.-Q. Zang, Y. Su, Y-Zh Li, Zh-P Ni, Q.-J. Meng, Inorg. Chem. 45, 174 (2006)CrossRefGoogle Scholar
  20. 20.
    S.-Q. Zang, J.-B. Li, Q.-Y. Li, H.-W. Hou, T.C.W. Mak, Polyhedron 29, 2907 (2010)CrossRefGoogle Scholar
  21. 21.
    S.-Q. Zang, Y Su, Y Song, Y.-Zh Li, Zh.-P Ni, H.-Zh Zhu, Q.-J Meng. Cryst. Growth Des. 6, 2369 (2006)CrossRefGoogle Scholar
  22. 22.
    SMART and SAINT, Area Detector Control and Integration Software (Siemens Analytical X-Ray Systems Inc, Madison, WI, 1996)Google Scholar
  23. 23.
    G.M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr. 46, 467 (1990)CrossRefGoogle Scholar
  24. 24.
    G.M. Sheldrick, SHELXS-97 (University of Göttingen, Germany, Program for Solution of Crystalstructures, 1997)Google Scholar
  25. 25.
    G.M. Sheldrick, SHELXL-97 (University of Göttingen, Germany, Program for Crystal Structures Refinement, 1997)Google Scholar
  26. 26.
    J.-S. Hu, Y.-J. Shang, X.-Q. Yao, L. Qin, Y.-Zh Li, Z.-J. Guo, H.-G. Zheng, Z.-L Xue. Cryst. Growth Des. 10, 2676 (2010)CrossRefGoogle Scholar
  27. 27.
    A.K. Mishra, J. Kumar, S. Khanna, S. Verma, Cryst. Growth Des. 11, 1623 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Tian, Zh.-J Zhang, A. Yu, W. Shi, Zh. Chen, P. Cheng. Cryst. Growth Des. 10, 3847 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Campo, L.R. Falvello, I. Mayoral, F. Palacio, T. Soler, M. Tomás, J. Am. Chem. Soc. 130, 2932 (2008)CrossRefGoogle Scholar
  30. 30.
    D. Shevchenko, M.F. Anderlund, A. Thapper, S. Styring, Energy Environ. Sci. 4, 1284 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.The College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouP. R. China

Personalised recommendations