Advertisement

Preparation and Characterization of Optically Active Polyacetylene@CdTe Quantum Dots Composites with Low Infrared Emissivity

  • Zhenjie Chen
  • Yuming Zhou
  • Tao Zhang
  • Xiaohai Bu
  • Xiaoli Sheng
Article

Abstract

Optically active polyacetylene@CdTe Quantum Dots (HPA@CdTe and RPA@CdTe) composites have been prepared based on the surface modification of CdTe quantum dots (QDs). The as-prepared HPA@CdTe and RPA@CdTe were characterized by Fourier-transform infrared spectroscopy, UV–Vis absorption spectra, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy and scanning electron microscopy. The infrared emissivity of HPA@CdTe and RPA@CdTe was also investigated. The results indicate that the polyacetylenes were successfully grafted onto the surfaces of the CdTe QDs without destroying the original crystalline structure of the CdTe QDs. Moreover, the infrared emissivity values of the HPA@CdTe and RPA@CdTe composites were reduced to 0.392 and 0.454, which possess much lower infrared emissivity values than those of the pure polymers and nanoparticles. The results are attributed to interfacial interactions between the organic and inorganic components. Furthermore, the helical conformation may also reduce the infrared emissivity due to the more ordered stereo structure and regular secondary structure.

Keywords

Polyacetylene Optical activity CdTe quantum dots Composite Infrared emissivity 

Notes

Acknowledgments

The authors are grateful to the National Nature Science Foundation of China (51077013), Fund Project for Transformation of Scientific and Technological Achievements of Jinagsu Province of China (BA2011086) for financial support.

References

  1. 1.
    M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, Macromolecules 30, 6333 (1997)CrossRefGoogle Scholar
  2. 2.
    P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Appl. Clay Sci. 15, 11 (1999)CrossRefGoogle Scholar
  3. 3.
    H.S. Lee, D. Fishman, B. Kim, R.A. Weiss, Polymer 45, 7807 (2004)CrossRefGoogle Scholar
  4. 4.
    X. Hu, X. Zhao, Polymer 45, 3819 (2004)CrossRefGoogle Scholar
  5. 5.
    L. Zhou, C. Gao, W. Xu, X. Wang, Y. Xu, Biomacromolecules 10, 1865 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A.R. Burns, D.Y. Sasaki, Nature 410, 913 (2001)CrossRefGoogle Scholar
  7. 7.
    P. Gomez-Romero, Adv. Mater. 13, 163 (2001)CrossRefGoogle Scholar
  8. 8.
    J.M. Garcés, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Adv. Mater. 12, 1835 (2000)CrossRefGoogle Scholar
  9. 9.
    K. Hu, M. Brust, A.J. Bard, Chem. Mater. 10, 1160 (1998)CrossRefGoogle Scholar
  10. 10.
    W. Wang, I. Germanenko, M.S. El-Shall, Chem. Mater. 14, 3028 (2002)CrossRefGoogle Scholar
  11. 11.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)CrossRefGoogle Scholar
  12. 12.
    S. Ghosh, A. Mukherjee, H. Kim, C. Lee, Mater. Chem. Phys. 78, 726 (2003)CrossRefGoogle Scholar
  13. 13.
    I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005)CrossRefGoogle Scholar
  14. 14.
    W.C.W. Chan, S. Nie, Science 281, 2016 (1998)CrossRefGoogle Scholar
  15. 15.
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. 12, 1102 (2000)CrossRefGoogle Scholar
  17. 17.
    S. Chen, J. Zhu, Y. Shen, C. Hu, L. Chen, Langmuir 23, 850 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Li, X. Hong, Y. Liu, D. Li, Y.W. Wang, J.H. Li, Y.B. Bai, T.J. Li, Adv. Mater. 17, 163 (2005)CrossRefGoogle Scholar
  19. 19.
    C.W. Wang, M.G. Moffitt, Langmuir 20, 11784 (2004)CrossRefGoogle Scholar
  20. 20.
    L. Chen, J. Zhu, Q. Li, S. Chen, Y. Wang, Eur. Polym. J. 43, 4593 (2007)CrossRefGoogle Scholar
  21. 21.
    D. Wan, Q. Fu, J. Huang, J. Appl. Polym. Sci. 102, 3679 (2006)CrossRefGoogle Scholar
  22. 22.
    W.W. Yu, E. Chang, J.C. Falkner, J. Zhang, A.M. Al-Somali, C.M. Sayes, J. Johns, R. Drezek, V.L. Colvin, J. Am. Chem. Soc. 129, 2871 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Lei, H. Tang, C. Zhou, T. Zhang, M. Feng, B. Zou, J. Lumin. 128, 277 (2008)CrossRefGoogle Scholar
  24. 24.
    G. Carrot, S.M. Scholz, C.J.G. Plummer, J.G. Hilborn, J.L. Hedrick, Chem. Mater. 11, 3571 (1999)CrossRefGoogle Scholar
  25. 25.
    B.I. Lemon, R.M. Crooks, J. Am. Chem. Soc. 122, 12886 (2000)CrossRefGoogle Scholar
  26. 26.
    Z. Wang, Y. Zhou, Y. Sun, Q. Yao, Macromolecules 42, 4972 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Liu, J.W. Lam, B.Z. Tang, Chem. Rev. 109, 5799 (2009)CrossRefGoogle Scholar
  28. 28.
    J.W. Lam, Y. Dong, K.K. Cheuk, C.C. Law, L.M. Lai, B.Z. Tang, Macromolecules 37, 6695 (2004)CrossRefGoogle Scholar
  29. 29.
    R. Nomura, J. Tabei, S. Nishiura, T. Masuda, Macromolecules 36, 561 (2002)CrossRefGoogle Scholar
  30. 30.
    R. Nomura, J. Tabei, T. Masuda, J. Am. Chem. Soc. 123, 8430 (2001)CrossRefGoogle Scholar
  31. 31.
    R. Nishiyabu, P. Anzenbacher, J. Am. Chem. Soc. 127, 8270 (2005)CrossRefGoogle Scholar
  32. 32.
    A. Buryak, K. Severin, J. Am. Chem. Soc. 127, 3700 (2005)CrossRefGoogle Scholar
  33. 33.
    P. Manesiotis, A.J. Hall, M. Emgenbroich, M. Quaglia, E.D. Lorenzi, B. Sellergren, Chem. Commun. 0, 2278 (2004)CrossRefGoogle Scholar
  34. 34.
    T. Nakano, Y. Okamoto, Chem. Rev. 101, 4013 (2001)CrossRefGoogle Scholar
  35. 35.
    B.L. Feringa, R.A. van Delden, N. Koumura, E.M. Geertsema, Chem. Rev. 100, 1789 (2000)CrossRefGoogle Scholar
  36. 36.
    E. Yashima, K. Maeda, H. Iida, Y. Furusho, K. Nagai, Chem. Rev. 109, 6102 (2009)CrossRefGoogle Scholar
  37. 37.
    H. Onouchi, T. Hasegawa, D. Kashiwagi, H. Ishiguro, K. Maeda, E. Yashima, Macromolecules 38, 8625 (2005)CrossRefGoogle Scholar
  38. 38.
    J.W.Y. Lam, Y. Dong, K.K.L. Cheuk, B.Z. Tang, Macromolecules 36, 7927 (2003)CrossRefGoogle Scholar
  39. 39.
    B.Z. Tang, N. Kotera, Macromolecules 22, 4388 (1989)CrossRefGoogle Scholar
  40. 40.
    Z. Wang, Y. Zhou, Y. Sun, Mater. Lett. 64, 908 (2010)CrossRefGoogle Scholar
  41. 41.
    Z. Wang, Y. Zhou, Y. Sun, J. Inorg. Organomet. Polym Mater. 19, 202 (2009)CrossRefGoogle Scholar
  42. 42.
    J. Chen, Y. Zhou, Q. Nan, X. Ye, Y. Sun, F. Zhang, Z. Wang, Eur. Polym. J. 43, 4151 (2007)CrossRefGoogle Scholar
  43. 43.
    Y. Liu, W. Chen, A.G. Joly, Y. Wang, C. Pope, Y. Zhang, J.-O. Bovin, P. Sherwood, J. Phys. Chem. B. 110, 16992 (2006)CrossRefGoogle Scholar
  44. 44.
    D. Zhou, M. Lin, Z. Chen, H. Sun, H. Zhang, H. Sun, B. Yang, Chem. Mater. 23, 4857 (2011)CrossRefGoogle Scholar
  45. 45.
    H. Zhang, Z. Zhou, B. Yang, M. Gao, J. Phys. Chem. B. 107, 8 (2003)CrossRefGoogle Scholar
  46. 46.
    Y. Shan, Y. Zhou, Y. Cao, Q. Xu, H. Ju, Z. Wu, Mater. Lett. 58, 1655 (2004)CrossRefGoogle Scholar
  47. 47.
    R.J. Davis, Z. Liu, Chem. Mater. 9, 2311 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhenjie Chen
    • 1
  • Yuming Zhou
    • 1
  • Tao Zhang
    • 1
  • Xiaohai Bu
    • 1
  • Xiaoli Sheng
    • 1
  1. 1.Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations