Synthesis, Characterization and Conducting Properties of Nanocomposites of Intercalated 2-Aminophenol with Aniline in Sodium-Montmorillonite

  • Mohamed Khaldi
  • Abdelghani Benyoucef
  • Cesar Quijada
  • Ahmed Yahiaoui
  • Emilia Morallon


A simple method was used to synthesize poly(2-aminophenol), poly(2-aminophenol-co-Aniline) and polyaniline nanocomposites with sodium-montmorillonite (Na-M) using in situ intercalative oxidative polymerization. Morphology and thermal properties of the synthesized nanocomposites were examined by transmission electron microscopy (TEM) and thermogravimetric analysis. The thermal analysis shows an improved thermal stability of the nanocomposites in comparison with the pure poly(2-aminophenol). The intercalation of polymers into the clay layers was confirmed by X-ray diffraction studies, TEM images and FTIR spectroscopy. In addition, the room temperature conductivity values of these nanocomposites varied between 8.21 × 10−5 and 6.76 × 10−4 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites, has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization into Na-M produces electroactive polymers.


Chemical synthesis Nanocomposite Conducting polymer Montmorillonite 



This work was supported by the National Agency for the Development of University Research (CRSTRA and ANDRU), the Directorate General of Scientific Research and Technological Development (DGRSDT) of Algeria. Ministerio de Economia y Competitividad, FEDER and Generalitat Valenciana are also acknowledged (MAT2010-15273; PROMETEO2013/038).


  1. 1.
    L.A. Majewski, M. Grell, Organic field-effect transistors with ultrathin modified gate insulator. Synth. Met. 151, 175–179 (2005)CrossRefGoogle Scholar
  2. 2.
    A.A. Argun, J.R. Reynolds, Line patterning for flexible and laterally configured electrochromic devices. J. Mater. Chem. 15, 1793–1800 (2005)CrossRefGoogle Scholar
  3. 3.
    Frost, Sullivan, Conductive Polymers: Ease of Processing Spearheads Commercial Success, 3rd edn. (2003)Google Scholar
  4. 4.
    B. Wessling, Dispersion as the link between basic research and commercial applications of conductive polymers (polyaniline). Synth. Met. 93, 143–154 (1998)CrossRefGoogle Scholar
  5. 5.
    J.J.R. Santos, J.A. Malmonge, A.J.G.C. Silva, A.J. Motheo, Y.P. Mascarenhas, Characteristics of polyaniline electropolymerized in camphor sulfonic acid. Synth. Met. 69, 141–142 (1995)CrossRefGoogle Scholar
  6. 6.
    H. Fan, N. Zhao, H. Wang, X. Li, J. Xu, Preparation of carpenterworm-like polyaniline/carbon nanotubes nanocomposites with enhanced electrochemical property. Mater. Lett. 92, 157–160 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Angelopoulos, Conducting polymers in microelectronics. IBM. J. Res. Dev. 45, 57–75 (2001)CrossRefGoogle Scholar
  8. 8.
    H.T. Akçaya, R. Bayraka, Ü. Demirbaşa, A. Kocab, H. Kantekina, Synthesis, electrochemical and spectroelectrochemical properties of peripherally tetra-imidazole substituted metal free and metallophthalocyanines. Dyes Pigment. 96, 483–494 (2013)CrossRefGoogle Scholar
  9. 9.
    S.F. Honga, S.C. Hwanga, L.C. Chen, Deposition-order-dependent polyelectrochromic and redox behaviors of the polyaniline-prussian blue bilayer. Electrochim. Acta. 53, 6215–6227 (2008)CrossRefGoogle Scholar
  10. 10.
    A.G. Yavuz, A. Uygun, V.R. Bhethanabotla, Substituted polyaniline/chitosan composites: synthesis and characterization. Carbohydr. Polym. 75, 448–453 (2009)CrossRefGoogle Scholar
  11. 11.
    X.X. Liu, Y.Q. Dou, J. Wu, X.Y. Peng, Chemical anchoring of silica nanoparticles onto polyaniline chains via electro-co-polymerization of aniline and N-substituted aniline grafted on surfaces of SiO2. Electrochim. Acta. 53, 4693–4698 (2008)CrossRefGoogle Scholar
  12. 12.
    R. Holze, in Handbook of Advanced Electronic and Photonic Materials and Devices, vol. 8, ed. by H.S. Nalwa (Academic Press, SanDiego, 2001), p. 209CrossRefGoogle Scholar
  13. 13.
    R. Holze, in Advanced Functional Molecules and Polymers, vol. 2, ed. by H.S. Nalwa (Gordon & Breach, Amsterdam, 2001), pp. 171–175Google Scholar
  14. 14.
    S.F. Scully, R. Bissessur, D.C. Dahn, G. Xie, In situ polymerization/intercalation of substituted anilines into iron (III) oxychloride. Solid State Ionics. 181, 933–938 (2010)CrossRefGoogle Scholar
  15. 15.
    M.T. Nguyen, A.F. Diaz, Water-soluble poly(aniline-co-o-anthranilic acid) copolymers. Macromolecules. 28, 3411–3415 (1995)CrossRefGoogle Scholar
  16. 16.
    H.J. Salavagione, J. Arias-Pardilla, J.M. Pérez, J.L. Vázquez, E. Morallon, M.C. Miras, C. Barbero, Study of redox mechanism of poly(o-aminophenol) using in situ techniques: evidence of two redox processes. J. Electroanal. Chem. 576, 139–145 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Mu, Electrochemical copolymerization of aniline and o-aminophenol. Synth. Met. 143, 259–268 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Barbero, R.I. Tucceri, D. Posadas, J.J. Silber, L. Sereno, Impedance characteristics of poly-o-aminophenol electrodes. Electrochim. Acta. 40, 1037–1040 (1995)CrossRefGoogle Scholar
  19. 19.
    C. Barbero, J.J. Silber, L. Sereno, Electrochemical properties of poly-ortho-aminophenol modified electrodes in aqueous acid solutions. J. Electroanal. Chem. 291, 81–101 (1990)CrossRefGoogle Scholar
  20. 20.
    H.J. Salavagione, J. Arias, P. Garcés, E. Morallon, C. Barbero, J.L. Vázquez, Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid médium. J. Electroanal. Chem. 565, 375–383 (2004)CrossRefGoogle Scholar
  21. 21.
    H.L. Tyan, Y.C. Liu, K.H. Wei, Effect of reactivity of organics-modified montmorillonite on the thermal and mechanical properties of montmorillonite/polyimide nanocomposites. Chem. Mater. 13, 222–226 (2001)CrossRefGoogle Scholar
  22. 22.
    J.W. Gilman, C.L. Jackson, A.B. Morgan, R.J. Hayis, E. Manias, Flammability properties of polymer-layeredsilicate nanocomposites. polypropylene and polystyrene nanocomposites. Chem. Mater. 12, 1866–1873 (2000)CrossRefGoogle Scholar
  23. 23.
    T. Lan, P.D. Kaviratna, T.J. Pinnavaia, On the nature of polyimide-clay hybrid composites. Chem. Mater. 6, 573–575 (1994)CrossRefGoogle Scholar
  24. 24.
    Y.H. Yu, J.M. Yeh, S.J. Liou, C.L. Chen, D.J. Liaw, Preparation and properties of polyimide-clay nanocomposite materials for anticorrosion application. J. Appl. Polym. Sci. 92, 3573–3582 (2004)CrossRefGoogle Scholar
  25. 25.
    Y. Kim, J.L. White, Formation of polymer nanocomposites with various organoclays. J. Appl. Polym. Sci. 96, 1888–1896 (2005)CrossRefGoogle Scholar
  26. 26.
    A. Uszuki, A. Kawasumi, M. Kojimay, S. Okada, T. Kamigaito, Three-dimensional observation of structure and morphology in nylon-6/clay nanocomposite. J. Mater. Res. 8, 1179–1184 (1993)CrossRefGoogle Scholar
  27. 27.
    W.S. Abdullah, K.A. Alshibli, M.S. Al-Zoubi, Influence of pore water chemistry on the swelling behavior of compacted clays. Appl. Clay Sci. 15, 447–462 (1999)CrossRefGoogle Scholar
  28. 28.
    A. Al-Tabbaa, T. Aravinthan, Natural clay-shredded tire mixture as landfill barrier materials. Waste Manag. 18, 9–16 (1998)CrossRefGoogle Scholar
  29. 29.
    S. Qutubuddin, X. Fu, Y. Tajuddin, Effect of the reaction parameters on the particle size in the dispersion polymerization. Polymer. 42, 807–814 (2005)Google Scholar
  30. 30.
    J. Morawiee, A. Pawlak, M. Slouf, Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. Eur. Poly. J. 41, 1115–1122 (2005)CrossRefGoogle Scholar
  31. 31.
    J.D. Fowler, S. Virji, R.B. Kaner, B.H. Weiller, Hydrogen detection by polyaniline nanofibers on gold and platinum electrodes. J. Phys. Chem. C 113, 6444–6449 (2009)CrossRefGoogle Scholar
  32. 32.
    J.W. Gilman, Preparation and properties of polyolefinclay nanocomposites. Appl. Clay Sci. 15, 31–49 (1999)CrossRefGoogle Scholar
  33. 33.
    C. Sanchez, G.J.S. Illia, A.A. De, F. Ribot, Designed hybrid organic inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13, 3061–3083 (2001)CrossRefGoogle Scholar
  34. 34.
    C. Park, J.G.J. Smith, J.W. Connell, S.E. Lowther, E.J. Siochi, Polyimide/silica hybrid-clay nanocomposites. Polymer. 46, 9694–9701 (2005)CrossRefGoogle Scholar
  35. 35.
    D.R. Yei, S.W. Kuo, H.K. Fu, F.C. Chang, Enhanced thermal properties of PS nanocomposites formed from montmorillonite treated with surfactant/cyclodextrin inclusion complex. Polymer. 46, 741–750 (2005)CrossRefGoogle Scholar
  36. 36.
    W.M.A.T. Bandara, D.M.M. Krishantha, J.S.H.Q. Perera, R.M.G. Rajapakse, D.T.B. Tennakoon, Preparation, characterization and conducting properties of nanocomposites of successively intercalated polyaniline in montmorillonite. J Compos. Mater. 39, 759–775 (2005)CrossRefGoogle Scholar
  37. 37.
    A. Belmokhtar, A. Benyoucef, A. Zehhaf, A. Yahiaoui, C. Quijada, E. Morallon, Studies on the conducting nanocomposite prepared by polymerization of 2-aminobenzoic acid with aniline from aqueous solutions in montmorillonite. Synth. Met. 162, 1864–1870 (2012)CrossRefGoogle Scholar
  38. 38.
    H.J. Salavagione, D. Cazorla-Amorós, S. Tidjane, M. Belbachir, A. Benyoucef, E. Morallon, Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites. Eur. Polym. J. 44, 1275–1284 (2008)CrossRefGoogle Scholar
  39. 39.
    G.M. do Nascimento, V.R.L. Constantino, R. Landers, M.L.A. Temperini, Aniline polymerization into montmorillonite clay: a spectroscopic investigation of the intercalated conducting polymer. Macromolecules. 37, 9373–9385 (2004)CrossRefGoogle Scholar
  40. 40.
    A. Zimmerman, U. Künzelmann, L. Dünsch, Initial states in the electropolymerization of aniline and p-aminodiphenylamine as studied by in situ FT-IR and UV-Vis spectroelectrochemistry. Synth. Met. 93, 17–25 (1998)CrossRefGoogle Scholar
  41. 41.
    M.G. Han, S.K. Cho, S.G. Oh, S.S. Im, Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth. Met. 126, 53–60 (2002)CrossRefGoogle Scholar
  42. 42.
    E.L. Foletto, C. Volzone, L.M. Porto, Performance of an argentinian acid-activated bentonite in the bleaching of soybean oil. Braz. J. Chem. Eng. 20, 139–145 (2003)CrossRefGoogle Scholar
  43. 43.
    A.S. Martineez, J.R. Rustad, A.F.H. Goetz, Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Am. Miner. 87, 1224–1234 (2002)Google Scholar
  44. 44.
    P. Bala, K. Bsamantaray, S.K. Srivastava, Dehydration transformation in Ca-montmorillonite. Bull. Mater Sci. 23, 61–67 (2000)CrossRefGoogle Scholar
  45. 45.
    R.I. Tucceri, C. Barbero, J.J. Silber, L. Sereno, Spectroelectrochemical study of poly-o-aminophenol. Electrochim. Acta. 42, 919–927 (1997)CrossRefGoogle Scholar
  46. 46.
    Y. Chunming, C. Chunyan, Synthesis characterisation and properties of polyanilines containing transtition metal ions. Synth. Met. 153, 133–136 (2005)CrossRefGoogle Scholar
  47. 47.
    H.J. Salavagione, D.F. Acevedo, M.C. Miras, A.J. Motheo, C.A. Barbero, Comparative study of 2-amino and 3-aminobenzoic acid copolymerization with aniline synthesis and copolymer properties. J. Polym. Sci. A. 42, 5587–5599 (2004)CrossRefGoogle Scholar
  48. 48.
    N. Ballav, M. Biswas, A conducting poly N-vinylcarbazole-molybdenum blues nanocomposite from N-vinylcarbazole-MoVI polymerization system. Synth. Metals. 149, 109–114 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohamed Khaldi
    • 1
  • Abdelghani Benyoucef
    • 1
  • Cesar Quijada
    • 2
  • Ahmed Yahiaoui
    • 1
  • Emilia Morallon
    • 3
  1. 1.Laboratoire de Chimie Organique, Macromoléculaire et des MatériauxUniversité de MascaraMascaraAlgeria
  2. 2.Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València. PzaAlcoySpain
  3. 3.Departamento de Química Física e Instituto Universitario de MaterialesUniversidad de AlicanteAlicanteSpain

Personalised recommendations