Skip to main content
Log in

Structures and Stabilities of the Metal Doped Gold Nano-Clusters: M@Au10 (M = W, Mo, Ru, Co)

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The structures and stabilities of a series of endohedral gold clusters containing ten gold atoms M@Au10 (M = W, Mo, Ru, Co) have been determined using density functional theory. The gradient-corrected functional BP86, the Tao-Perdew-Staroverov-Scuseria TPSS meta-GGA functional, and the hybrid density functionals B3LYP and PBE1PBE were employed to calculate the structures, binding energies, adiabatic ionization potentials, and adiabatic electron affinities for these clusters. The LanL2DZ effective core potentials and the corresponding valence basis sets were employed. The M@Au10 (M = W, Mo, Ru, Co) clusters have higher binding energies than an empty Au10 cluster. In addition, the large HOMO–LUMO gaps suggest that the M@Au10 (M = W, Mo, Ru, Co) clusters are all likely to be stable chemically. The ionization potentials and electron affinities for these clusters are very high, and the W@Au10 and Mo@Au10 clusters have electron affinities similar to the super-halogen Al13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.C. Bond, Catal. Today 72, 5 (2002)

    Article  CAS  Google Scholar 

  2. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989)

    Article  CAS  Google Scholar 

  3. A. Ueda, M. Haruta, Gold Bull. 32, 3 (1999)

    Article  CAS  Google Scholar 

  4. G. Mul, A. Zwijnenburg, B. van der Linden, M. Makkee, J.A. Moulijn, J. Catal. 201, 128 (2001)

    Article  CAS  Google Scholar 

  5. C.W. Corti, R.J. Holliday, D.T. Thompson, Gold Bull. 35, 111 (2002)

    Article  CAS  Google Scholar 

  6. Y. Kim, R.C. Johnson, J.T. Hupp, Nano Lett. 1, 165 (2001)

    Article  Google Scholar 

  7. F. Patolsky, Y. Weizmann, O. Lioubashevski, I. Willner, Angew. Chem. Int. Ed. 41, 2323 (2002)

    Article  CAS  Google Scholar 

  8. J.F. Hanfeld, F.R. Furuya, J. Histochem. Cytochem. 40, 177 (1992)

    Article  Google Scholar 

  9. Y.C. Cao, R. Jin, C.A. Mirkin, Science 297, 1536 (2002)

    Article  CAS  Google Scholar 

  10. T.M. Herne, M.J. Tarlov, J. Am. Chem. Soc. 119, 8916 (1997)

    Article  CAS  Google Scholar 

  11. H.M. Lee, M. Ge, B.R. Shau, P. Tarakeshwar, K.S. Kim, J. Phys. Chem. B 107, 9994 (2003)

    Article  CAS  Google Scholar 

  12. J. Oviedo, R.E. Palmer, J. Chem. Phys. 117, 9548 (2002)

    Article  CAS  Google Scholar 

  13. M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I.M.L. Billas, T.P. Martin, J. Chem. Phys. 110, 9915 (1999)

    Article  CAS  Google Scholar 

  14. W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L. Theil Kuhn, H. Weidele, P. Lievens, R.E. Silverans, Chem. Phys. Lett. 314, 227 (1999)

    Article  CAS  Google Scholar 

  15. S. Neukermans, E. Janssens, H. Tanaka, R.E. Silverans, P. Lievens, Phys. Rev. Lett. 90, 033401 (2003)

    Article  CAS  Google Scholar 

  16. M.B. Torres, E.M. Fernández, L.C. Balbás, Phys. Stat. Sol. 242, 819 (2005)

    Article  CAS  Google Scholar 

  17. P. Schwerdtfeger, Angew. Chem. Int. Ed. 42, 1892 (2003)

    Article  CAS  Google Scholar 

  18. S. Link, M.A. El-Sayed, Int. Rev. Phys. Chem. 19, 409 (2000)

    Article  CAS  Google Scholar 

  19. P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)

    Article  Google Scholar 

  20. P. Pyykkö, N. Runeberg, Angew. Chem. Int. Ed. 41, 2174 (2002)

    Article  Google Scholar 

  21. X. Li, B. Kiran, J. Li, H.-J. Zhai, L.-S. Wang, Angew. Chem. Int. Ed. 41, 4786 (2002)

    Article  CAS  Google Scholar 

  22. J. Autschbach, B.A. Hess, M.P. Johansson, J. Neugebauer, M. Patzschke, P. Pyykkö, M. Reiher, D. Sundholm, Phys. Chem. Chem. Phys. 6, 11 (2004)

    Article  CAS  Google Scholar 

  23. H.-J. Zhai, J. Li, L.-S. Wang, J. Chem. Phys. 121, 8369 (2004)

    Article  CAS  Google Scholar 

  24. S.-Y. Wang, J.-Z. Yu, H. Mizuseki, Q. Sun, C.-Y. Wang, Y. Kawazoe, Phys. Rev. B 70, 165413 (2004)

    Article  Google Scholar 

  25. Y.-X. Qiu, S.-G. Wang, W.H. Eugen Schwarz, Chem. Phys. Lett. 397, 374 (2004)

    Article  CAS  Google Scholar 

  26. J. Long, Y.-X. Qiu, X.-Y. Chen, S.-G. Wang, J. Phys. Chem. C 112, 12646 (2008)

    Article  CAS  Google Scholar 

  27. L.-M. Wang, S. Bulusu, H.-J. Zhai, X.-C. Zeng, L.-S. Wang, Angew. Chem. Int. Ed. 46, 2915 (2007)

    Article  CAS  Google Scholar 

  28. Y. Gao, S. Bulusu, X.C. Zeng, J. Am. Chem. Soc. 127, 15680 (2005)

    Article  CAS  Google Scholar 

  29. M. Walter, H. Häkkinen Phys, Chem. Chem. Phys. 8, 5407 (2006)

    Article  CAS  Google Scholar 

  30. M.-X. Chen, X.H. Yan, J. Chem. Phys. 128, 174305 (2008)

    Article  Google Scholar 

  31. S. Zorriasatein, K. Joshi, D.G. Kanhere, J. Chem. Phys. 128, 184314 (2008)

    Article  Google Scholar 

  32. L.-M. Wang, S. Bulusu, W. Huang, R. Pal, L.-S. Wang, X.C. Zeng, J. Am. Chem. Soc. 129, 15136 (2007)

    Article  CAS  Google Scholar 

  33. M. Laupp, J. Strähle, Angew. Chem. Int. Ed. 33, 207 (1994)

    Article  Google Scholar 

  34. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  35. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  Google Scholar 

  36. J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003)

    Article  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1936E (1997)

    Article  Google Scholar 

  39. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  40. L.E. Roy, P.J. Hay, R.L. Martin, J. Chem. Theory Comput. 4, 1029 (2008)

    Article  CAS  Google Scholar 

  41. M.J.T. Frisch, Gaussian 03, Revision C.02 (Gaussian, Inc, Wallingford, 2004)

    Google Scholar 

  42. Y. Gao, S. Bulusu, X.C. Zeng, ChemPhysChem 7, 2275 (2006)

    Article  CAS  Google Scholar 

  43. J. Li, X. Li, H.-J. Zhai, L.-S. Wang, Science 299, 864 (2003)

    Article  CAS  Google Scholar 

  44. C. Blondel, P. Cacciani, C. Delsart, R. Trainham, Phys. Rev. A 40, 3698 (1989)

    Article  CAS  Google Scholar 

  45. U. Berzinsh, M. Gustafsson, D. Hanstorp, A. Klinkmüller, U. Ljungblad, A.-M. Mårtensson-Pendrill, Phys. Rev. A 50, 231 (1995)

    Article  Google Scholar 

  46. X. Li, L.-S. Wang, Phys. Rev. B 65, 153404 (2000)

    Article  Google Scholar 

  47. H.-P. Cheng, R.S. Berry, R.L. Whetten, Phys. Rev. B 43, 10647 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by Grant Number P20RR017661 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. The authors would like to thank Dr. Svein Saebø for allowing the use of his laboratory space during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Gwaltney.

Additional information

The authors dedicate this paper to the memory of Prof. Dwight A. Sweigart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, D., Pittman, C.U. & Gwaltney, S.R. Structures and Stabilities of the Metal Doped Gold Nano-Clusters: M@Au10 (M = W, Mo, Ru, Co). J Inorg Organomet Polym 24, 241–249 (2014). https://doi.org/10.1007/s10904-013-9995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-013-9995-6

Keywords

Navigation