1,1-Dimethyl-2,3,4,5-tetraphenylsilole as a Molecular Rotor Probe to Investigate the Microviscosity of Imidazolium Ionic Liquids

  • Regina E. Scalise
  • Peter A. Caradonna
  • Henry J. Tracy
  • Jerome L. Mullin
  • Amy E. Keirstead


Room temperature ionic liquids (ILs) have attracted interest for a wide variety of applications, yet many details regarding their physicochemical properties remain unclear, including how their bulk properties differ from those on the microscopic scale. In this work, 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS) was employed as a molecular rotor probe to investigate the microviscosities of three imidazolium ILs: butylmethylimidazolium tetrafluoroborate, butylmethylimidazolium hexafluorophosphate, and octylmethylimidazolium tetrafluoroborate. The photoluminescence quantum yields (PL QYs) for DMTPS in these ILs were compared to those measured for the same probe in nonpolar viscous (hexanes–mineral oil) and polar viscous (glycerol–ethanol) solvent systems and the microviscosities calculated using the Förster–Hoffmann equation. The PL QY of DMTPS was found to be higher in ILs than in low viscosity solvents but not as high as in nonpolar solvents of similar bulk viscosity. These results indicate that the microviscosity experienced by the silole in the ILs is less than the measured bulk viscosity, suggesting that the siloles occupy a “domain” within the IL matrix that allows enough free volume for the silole to deactivate rotationally. The stability of DMTPS was also shown to be greater in the ILs than in molecular solvents, suggesting that the IL medium might permit the construction of a robust optoelectronic device.


Siloles Ionic liquids Photoluminescence Microviscosity 



This work was made possible largely through financial support from the Maine Space Grant Consortium via an Education and Seed Research Award (MSGC MSG/ESR SG-11-11) and the MSGC Undergraduate Research Scholarship Program. Additional financial support was provided by the National Science Foundation (NSF #CHE-0808813 and NSF #CHE-0923028), the Green Family Foundation, the University of New England, and the University of Southern Maine. The authors thank Sean Naughton (UNE) and Katie Edwards (UNE), whose work contributed to this report.


  1. 1.
    E.W. Castner Jr., C.J. Margulis, M. Maroncelli, J.F. Wishart, Ionic liquids: structure and photochemical reactions. Annu. Rev. Phys. Chem. 62, 85–105 (2011)CrossRefGoogle Scholar
  2. 2.
    J.P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011)CrossRefGoogle Scholar
  3. 3.
    R.D. Rogers, K.R. Seddon (eds.), in Ionic Liquids. Industrial Applications for Green Chemistry. ACS Symposium Series, vol. 818 (American Chemical Society, Washington, DC, 2002)Google Scholar
  4. 4.
    R.D. Rogers, K.R. Seddon (eds.), in Ionic Liquids as Green Solvents. Progress and Prospects. ACS Symposium Series, vol. 856 (American Chemical Society, Washington, DC, 2003)Google Scholar
  5. 5.
    R.D. Rogers, K.R. Seddon, Ionic liquids: solvents of the future? Sci. N. Ser. 302(5646), 792–793 (2003)CrossRefGoogle Scholar
  6. 6.
    M. Smiglak, A. Metlen, R.D. Rogers, The second evolution of ionic liquids: from solvents and separations to advanced materials—energetic examples from the ionic liquid cookbook. Acc. Chem. Res. 40(11), 1182–1192 (2007)CrossRefGoogle Scholar
  7. 7.
    H. Weingartner, Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Ed. 47(4), 654–670 (2008)CrossRefGoogle Scholar
  8. 8.
    T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084 (1999)CrossRefGoogle Scholar
  9. 9.
    M. Freemantle, Designer solvents. Chem. Eng. News 76, 32–37 (1998)CrossRefGoogle Scholar
  10. 10.
    M. Alvaro, B. Ferrer, H. Garcia, M. Narayana, Screening of an ionic liquid as medium for photochemical reactions. Chem. Phys. Lett. 362, 435–440 (2002)CrossRefGoogle Scholar
  11. 11.
    C. Chiappe, Organic synthesis: ionic liquids in organic synthesis: effects on rate and selectivity, in Ionic Liquids in Synthesis, vol. 1, ed. by P. Wasserscheid, T. Welton (Wiley-VCH Verlag GmbH and Co, Weinheim, 2008), pp. 265–292Google Scholar
  12. 12.
    M.J. Earle, S.P. Katdare, K.P. Seddon, Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org. Lett. 6(5), 707–710 (2004)CrossRefGoogle Scholar
  13. 13.
    J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. 44, 1765–1766 (1998)CrossRefGoogle Scholar
  14. 14.
    S.G. Jones, H.M. Yau, E. Davies, J.M. Hook, T.G.A. Youngs, J.B. Harper, A.K. Croft, Ionic liquids through the looking glass: theory mirrors experiment and provides further insight into aromatic substitution processes. Phys. Chem. Chem. Phys. 12(8), 1873–1878 (2010)CrossRefGoogle Scholar
  15. 15.
    S.V. Malhotra (ed.), in Ionic Liquids in Organic Synthesis. American Chemical Society Symposium Series, vol 950 (American Chemical Society, Washington, DC, 2007)Google Scholar
  16. 16.
    F. van Rantwijk, R.A. Sheldon, Biocatalysis in ionic liquids. Chem. Rev. 107(6), 2757–2785 (2007)CrossRefGoogle Scholar
  17. 17.
    J.E. Bara, D.E. Camper, D.L. Gin, R.D. Noble, Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc. Chem. Res. 43(1), 152–159 (2010)CrossRefGoogle Scholar
  18. 18.
    J.F. Brennecke, B.E. Gurkan, Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 1(24), 3459–3464 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Ionic liquids for CO2 capture: development and progress. Chem. Eng. Process. 49(4), 313–322 (2010)CrossRefGoogle Scholar
  20. 20.
    S.-Y. Ku, S.-Y. Lu, Inexpensive room temperature ionic liquids for low volatility electrolytes of dye-sensitized solar cells. Int. J. Electrochem. Sci. 6(11), 5219–5227 (2011)Google Scholar
  21. 21.
    D.B. Kuang, P. Wang, S. Ito, S.M. Zakeeruddin, M. Gratzel, Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. J. Am. Chem. Soc. 128(24), 7732–7733 (2006)CrossRefGoogle Scholar
  22. 22.
    Z.-S. Wang, N. Koumura, Y. Cui, M. Miyashita, S. Mori, K. Hara, Exploitation of ionic liquid electrolytes for dye-sensitized solar cells by molecular modification of organic-dye sensitizers. Chem. Mater. 21(13), 2810–2816 (2009)CrossRefGoogle Scholar
  23. 23.
    S.M. Zakeeruddin, M. Gratzel, Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells. Adv. Funct. Mater. 19(14), 2187–2202 (2009)CrossRefGoogle Scholar
  24. 24.
    X.-W. Chen, J.-W. Liu, J.-H. Wang, A highly fluorescent hydrophilic ionic liquid as a potential probe for the sensing of biomacromolecules. J. Phys. Chem. B 115(6), 1524–1530 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Coleman, R. Byrne, N. Alhashimy, K.J. Fraser, D.R. MacFarlane, D. Diamond, Photochromic imidazolium based ionic liquids based on spiropyran. Phys. Chem. Chem. Phys. 12, 7009–7017 (2010)CrossRefGoogle Scholar
  26. 26.
    K. Cui, D. Zhu, W. Cui, X. Lu, Q. Lu, Dual-responsive ionically assembled fluorescent nanoparticles from copoly(ionic liquid) for temperature sensor. J. Phys. Chem. C 116(10), 6077–6082 (2012)CrossRefGoogle Scholar
  27. 27.
    D.A. Jayawardhana, M.K. Sengupta, D.M.M. Krishantha, J. Gupta, D.W. Armstrong, X. Guan, Chemical-induced pH-mediated molecular switch. Anal. Chem. 83(20), 7692–7697 (2011)CrossRefGoogle Scholar
  28. 28.
    B.R. Lee, H. Choi, S.P. Ji, H.J. Lee, S.O. Kim, J.Y. Kim, M.H. Song, Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices. J. Mater. Chem. 21(7), 2051–2053 (2011)CrossRefGoogle Scholar
  29. 29.
    S.P. Naughton, R.M. Gaudet, A.A. Leslie, A.E. Keirstead, Direct observation of spiropyran phosphorescence in imidazolium ionic liquids. Chem. Phys. Lett. 556, 102–107 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Zhang, Q. Zhang, B. Ye, X. Li, X. Zhang, Y. Deng, Photochromism of spiropyran in ionic liquids: enhanced fluorescence and delayed thermal reversion. J. Phys. Chem. B 113(17), 6012–6019 (2009)CrossRefGoogle Scholar
  31. 31.
    V.Y. Lee, A. Sekiguchi, M. Ichinohe, N. Fukaya, Stable aromatic compounds containing heavier Group 14 elements. J. Organomet. Chem. 611(1–2), 228–235 (2000)CrossRefGoogle Scholar
  32. 32.
    K. Tamao, M. Uchida, T. Izumizawa, K. Furukawa, S. Yamaguchi, Silole derivatives as efficient electron transporting materials. J. Am. Chem. Soc. 118(47), 11974–11975 (1996)CrossRefGoogle Scholar
  33. 33.
    B. Wrackmeyer, 1,1-Organoboration of alkynyl-silicon, -germanium, -tin and -lead compounds. Coord. Chem. Rev. 145, 125–156 (1995)Google Scholar
  34. 34.
    S. Yamaguchi, K. Tamao, Silole-containing σ*- and π*-conjugated compounds. J. Chem. Soc. Dalton Trans. 22, 3693–3702 (1998)CrossRefGoogle Scholar
  35. 35.
    Y. Yamaguchi, Design of novel σ–π conjugated polysilanes. Synth. Met. 82(2), 149–153 (1996)CrossRefGoogle Scholar
  36. 36.
    X. Zhan, S. Barlow, S.R. Marder, Substituent effects on the electronic structure of siloles. Chem. Commun. 15, 1948–1955 (2009)CrossRefGoogle Scholar
  37. 37.
    X.W. Zhan, C. Risko, F. Amy, C. Chan, W. Zhao, S. Barlow, A. Kahn, J.L. Bredas, S.R. Marder, Electron affinities of 1,1-diaryl-2,3,4,5-tetraphenylsiloles: direct measurements and comparison with experimental and theoretical estimates. J. Am. Chem. Soc. 127(25), 9021–9029 (2005)CrossRefGoogle Scholar
  38. 38.
    C.J. Bhongale, C.W. Chang, E.W.G. Diau, C.S. Hsu, Y.Q. Dong, B.Z. Tang, Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions. Chem. Phys. Lett. 419(4–6), 444–449 (2006)CrossRefGoogle Scholar
  39. 39.
    J. Chen, Y. Cao, Silole-containing polymers: chemistry and optoelectronic properties. Macromol. Rapid Commun. 28(17), 1714–1742 (2007)CrossRefGoogle Scholar
  40. 40.
    J.W. Chen, C.C.W. Law, J.W.Y. Lam, Y.P. Dong, S.M.F. Lo, I.D. Williams, D.B. Zhu, B.Z. Tang, Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 15(7), 1535–1546 (2003)CrossRefGoogle Scholar
  41. 41.
    J.W. Chen, B. Xu, K.X. Yang, Y. Cao, H.H.Y. Sung, I.D. Williams, B.Z. Tang, Photoluminescence spectral reliance on aggregation order of 1,1-bis(2′-thienyl)-2,3,4,5-tetraphenylsilole. J. Phys. Chem. B 109(36), 17086–17093 (2005)CrossRefGoogle Scholar
  42. 42.
    M.H. Lee, D. Kim, Y. Dong, B.Z. Tang, Time-resolved photoluminescence study of an aggregation-induced emissive chromophore. J. Korean Phys. Soc. 45(2), 329–332 (2004)Google Scholar
  43. 43.
    Z. Li, Y.Q. Dong, J.W.Y. Lam, J. Sun, A. Qin, M. Haussler, Y.P. Dong, H.H.Y. Sung, I.D. Williams, H.S. Kwok, B.Z. Tang, Functionalized siloles: versatile synthesis, aggregation-induced emission, and sensory and device applications. Adv. Funct. Mater. 19(6), 905–917 (2009)CrossRefGoogle Scholar
  44. 44.
    J. Liu, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J. Inorg. Organomet. Polym. Mater. 19(3), 249–285 (2009)CrossRefGoogle Scholar
  45. 45.
    J.D. Luo, Z.L. Xie, J.W.Y. Lam, L. Cheng, H.Y. Chen, C.F. Qiu, H.S. Kwok, X.W. Zhan, Y.Q. Liu, D.B. Zhu, B.Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 18, 1740–1741 (2001)CrossRefGoogle Scholar
  46. 46.
    J.L. Mullin, H.J. Tracy, J.R. Ford, S.R. Keenan, F. Fridman, Characteristics of aggregation induced emission in 1,1-dimethyl-2,3,4,5-tetraphenyl and 1,1,2,3,4,5-hexaphenyl siloles and germoles. J. Inorg. Organomet. Polym. Mater. 17, 201–213 (2007)CrossRefGoogle Scholar
  47. 47.
    H.J. Tracy, J.L. Mullin, W.T. Klooster, J.A. Martin, J. Haug, S. Wallace, I. Rudloe, K. Watts, Enhanced photoluminescence from group 14 metalloles in aggregated and solid solutions. Inorg. Chem. 44(6), 2003–2011 (2005)CrossRefGoogle Scholar
  48. 48.
    S. Yin, Q. Peng, Z. Shuai, W. Fang, Y.-H. Wang, Y. Luo, Aggregation-enhanced luminescence and vibronic coupling of silole molecules from first principles. Phys. Rev. B 73(20), 205409/205401–205409/205405 (2006)Google Scholar
  49. 49.
    T.C. Bozeman, K.A. Edwards, K.M. Fecteau, M.G. Verde Jr., A. Blanchard, D.L. Woodall, N. Benfaremo, J.R. Ford, J.L. Mullin, C.K. Prudente, H.J. Tracy, Tolyl-substituted siloles: synthesis, substituent effects, and aggregation-induced emission. J. Inorg. Organomet. Polym. Mater. 21(2), 316–326 (2011)CrossRefGoogle Scholar
  50. 50.
    Y. Dong, J.W.Y. Lam, A. Qin, Z. Li, J. Sun, H.S. Kwok, B.Z. Tang, in Aggregation-Induced Emission. Proceedings of the SPIE—The International Society for Optical Engineering 6333 (Organic Light Emitting Materials and Devices X):63331D/63331–63331D/63310, 2006. doi: 10.1117/12.679373
  51. 51.
    Y. Ren, Y.Q. Dong, J.W.Y. Lam, B.Z. Tang, K.S. Wong, Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique. Chem. Phys. Lett. 402(4–6), 468–473 (2005)CrossRefGoogle Scholar
  52. 52.
    Y. Ren, J.W.Y. Lam, Y.Q. Dong, B.Z. Tang, K.S. Wong, Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates. J. Phys. Chem. B 109(3), 1135–1140 (2005)CrossRefGoogle Scholar
  53. 53.
    H. Murata, Z.H. Kafafi, M. Uchida, Efficient organic light-emitting diodes with undoped active layers based on silole derivatives. Appl. Phys. Lett. 80(2), 189 (2002)CrossRefGoogle Scholar
  54. 54.
    H. Murata, G.G. Malliaras, M. Uchida, Y. Shen, Z.H. Kafafi, Non-dispersive and air-stable electron transport in an amorphous organic semiconductor. Chem. Phys. Lett. 339(3–4), 161–166 (2001)CrossRefGoogle Scholar
  55. 55.
    M. Uchida, T. Izumizawa, T. Nakano, S. Yamaguchi, K. Tamao, K. Furukawa, Structural optimization of 2,5-diarylsiloles as excellent electron-transporting materials for organic electroluminescent devices. Chem. Mater. 13(8), 2680–2683 (2001)CrossRefGoogle Scholar
  56. 56.
    S. Yamaguchi, T. Endo, M. Uchida, T. Izumizawa, K. Furukawa, K. Tamao, Toward new materials for organic electroluminescent devices: synthesis, structures, and properties of a series of 2,5-diaryl-3,4-diphenylsiloles. Chem. Eur. J. 6(9), 1683–1692 (2000)CrossRefGoogle Scholar
  57. 57.
    G. Yu, S.W. Yin, Y.Q. Liu, J.S. Chen, X.J. Xu, X.B. Sun, D.G. Ma, X.W. Zhan, Q. Peng, Z.G. Shuai, B.Z. Tang, D.B. Zhu, W.H. Fang, Y. Luo, Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles [Review]. J. Am. Chem. Soc. 127(17), 6335–6346 (2005)CrossRefGoogle Scholar
  58. 58.
    Y. Liu, Y. Tang, N.N. Barashkov, I.S. Irgibaeva, J.W.Y. Lam, R. Hu, D. Birimzhanova, Y. Yu, B.Z. Tang, Fluorescence chemosensor for detection and quantitation of carbon dioxide gas. J. Am. Chem. Soc. 132, 13951–13953 (2010)CrossRefGoogle Scholar
  59. 59.
    S. Coleman, R. Byrne, S. Minkovska, D. Diamond, Investigating nanostructuring within imidazolium ionic liquids: a thermodynamic study using photochromic molecular probes. J. Phys. Chem. B 113(47), 15589–15596 (2009)CrossRefGoogle Scholar
  60. 60.
    Z. Hu, C. Margulis, Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. Proc. Natl. Acad. Sci. USA 103(4), 831–836 (2006)CrossRefGoogle Scholar
  61. 61.
    S. Patra, A. Samanta, Microheterogeneity of some imidazolium ionic liquids as revealed by fluorescence correlation spectroscopy and lifetime studies. J. Phys. Chem. B 116, 12275–12283 (2012)CrossRefGoogle Scholar
  62. 62.
    A. Samanta, Fluorescence probing of the physicochemical characteristics of the room temperature ionic liquids, in Advanced Fluorescence Reporters in Chemistry and Biology III: Applications in Sensing and Imaging, vol. 113, ed. by A.P. Demchenko (Springer, New York, 2011), pp. 65–90CrossRefGoogle Scholar
  63. 63.
    S.M. Urahata, M.C.C. Ribeiro, Unraveling dynamical heterogeneity in the ionic liquid 1-butyl-3-methylimidazolium chloride. J. Phys. Chem. Lett. 1, 1738–1742 (2010)CrossRefGoogle Scholar
  64. 64.
    M. Wakasa, T. Yago, A. Hamasaki, Nanoscale heterogeneous structure of ionic liquid as revealed by magnetic field effects. J. Phys. Chem. B 113(31), 10559–10561 (2009)CrossRefGoogle Scholar
  65. 65.
    S. Hashimoto, Zeolite photochemistry: impact of zeolites on photochemistry and feedback from photochemistry to zeolite science. J. Photochem. Photobiol. C 4(1), 19–49 (2003)CrossRefGoogle Scholar
  66. 66.
    V. Ramamurthy, P. Lakshminarasimhan, C.P. Grey, L.P. Johnston, Energy transfer, proton transfer and electron transfer reactions within zeolites. Chem. Commun. 1998(22), 2411–2548 (1998)Google Scholar
  67. 67.
    J.C. Scaiano, H. Garcia, Intrazeolite photochemistry: toward supramolecular control of molecular photochemistry. Acc. Chem. Res. 32(9), 783–793 (1999)CrossRefGoogle Scholar
  68. 68.
    A. Dhakshinamoorthym, M. Alvaro, H. Garcia, Metal-organic frameworks as heterogeneous catalysts for oxidation reactions. Catal. Sci. Technol. 1(6), 856–857 (2011)CrossRefGoogle Scholar
  69. 69.
    H. Furukawa, K.E. Cordova, M.O. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341, 1230444-1230441–1230444-1230412 (2013)CrossRefGoogle Scholar
  70. 70.
    N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRefGoogle Scholar
  71. 71.
    K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J.P. Hill, Nanoarchitects for mesoporous materials. Bull. Chem. Soc. Jpn. 85(1), 1–32 (2012)CrossRefGoogle Scholar
  72. 72.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M.O. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008)CrossRefGoogle Scholar
  73. 73.
    K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M.O. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103(27), 10186–10191 (2006)CrossRefGoogle Scholar
  74. 74.
    Y. Tian, C. Cai, Y. Ji, X. You, S. Peng, G. Lee, [Co5(im)10*2 MB]∞: a metal–organic open-framework with zeolite-like topology. Angew. Chem. Int. Ed. 41(8), 1384–1386 (2002)CrossRefGoogle Scholar
  75. 75.
    R.M. Pagni, C.M. Gordon, Photochemistry in ionic liquids, in CRC Handbook of Organic Photochemistry and Photobiology, 2nd edn., ed. by W.M. Horspool, F. Lenci (CRC Press, Boca Raton, 2004)Google Scholar
  76. 76.
    S. Pandey, S.N. Baker, S. Pandey, G.A. Baker, Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review. J. Fluoresc. 22, 1313–1343 (2012)CrossRefGoogle Scholar
  77. 77.
    S. Zhang, Z. Chen, X. Qi, Y. Deng, Distinct influence of the anion and ether group on the polarity of ammonium and imidazolium ionic liquids. N. J. Chem. 36, 1043–1050 (2012)CrossRefGoogle Scholar
  78. 78.
    M.A. Haidekker, E.A. Theodorakis, Environment-sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 4, 11 (2010)CrossRefGoogle Scholar
  79. 79.
    S. Howell, M. Dakanali, E.A. Theodorakis, M.A. Haidekker, Intrinsic and extrinsic temperature-dependency of viscosity-sensitive fluorescent molecular rotors. J. Fluoresc. 22, 457–465 (2012)CrossRefGoogle Scholar
  80. 80.
    J.A. Levitt, P.-H. Chung, M.K. Kuimova, G. Yahioglu, Y. Wang, J. Qu, K. Suhling, Fluorescence anisotropy of molecular rotors. ChemPhysChem 12, 662–672 (2011)CrossRefGoogle Scholar
  81. 81.
    A. Mustafic, H.-M. Huang, E.A. Theodorakis, M.A. Haidekker, Imaging of flow patterns with fluorescent molecular rotors. J. Fluoresc. 20, 1087–1098 (2010)CrossRefGoogle Scholar
  82. 82.
    R. Sinkeldam, A.J. Wheat, H. Boyaci, Y. Tor, Emissive nucleosides as molecular rotors. ChemPhysChem 12, 567–570 (2011)CrossRefGoogle Scholar
  83. 83.
    B.M. Uzhinov, V.L. Ivanov, M.Y. Melinkov, Molecular rotors as luminescence sensors of local viscosity and viscous flow in solutions and organized systems. Russ. Chem. Rev. 80(12), 1179–1190 (2011)CrossRefGoogle Scholar
  84. 84.
    F. Zhou, J. Shao, Y. Yang, J. Zhao, H. Guo, X. Li, S. Ji, Z. Zhang, Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states. Eur. J. Org. Chem. 25, 4773–4787 (2011)Google Scholar
  85. 85.
    A. Paul, A. Samanta, Free volume dependence of the internal rotation of a molecular rotor probe in room temperature ionic liquids. J. Phys. Chem. B 112, 16626–16632 (2008)CrossRefGoogle Scholar
  86. 86.
    J. Ferman, J.P. Kakareka, W.T. Klooster, J.L. Mullin, J. Quattrucci, J.S. Ricci, H.J. Tracy, W.J. Vining, S. Wallace, Electrochemical and photophysical properties of a series of group-14 metalloles. Inorg. Chem. 38(10), 2464–2472 (1999)CrossRefGoogle Scholar
  87. 87.
    M.J. Earle, C.M. Gordon, N.V. Plechkova, K.R. Seddon, T. Welton, Decolorization of ionic liquids for spectroscopy. Anal. Chem. 79(2), 758–764 (2007)CrossRefGoogle Scholar
  88. 88.
    P. Nockemann, K. Binnemans, K. Driesen, Purification of imidazolium ionic liquids for spectroscopic applications. Chem. Phys. Lett. 415, 131–136 (2005)CrossRefGoogle Scholar
  89. 89.
    J.N. Demas, G.A. Crosby, Measurement of photoluminescence quantum yields. A review. J. Phys. Chem. 75(8), 991–1024 (1971)CrossRefGoogle Scholar
  90. 90.
    C.L. Renschler, L.A. Harrah, Determination of quantum yields of fluorescence by optimizing the fluorescence intensity. Anal. Chem. 55(4), 798–800 (1983)CrossRefGoogle Scholar
  91. 91.
    T. Forster, G. Hoffmann, Effect of viscosity on the fluorescence quantum yield of a dye system. Z. Phys. Chem. (Wiesbaden) 75, 63–76 (1971)CrossRefGoogle Scholar
  92. 92.
    R.O. Loutfy, B.A. Arnold, Effect of viscosity and temperature on torsional relaxation of molecular rotors. J. Phys. Chem. 86, 4205–4211 (1982)CrossRefGoogle Scholar
  93. 93.
    E.W. Castner Jr., C.J. Margulis, M. Maroncelli, J.F. Wishart, Ionic liquids: structure and photochemical reactions. Annu. Rev. Phys. Chem. 62, 85–105 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Regina E. Scalise
    • 1
  • Peter A. Caradonna
    • 1
  • Henry J. Tracy
    • 2
  • Jerome L. Mullin
    • 1
  • Amy E. Keirstead
    • 1
  1. 1.Department of Chemistry and PhysicsUniversity of New EnglandBiddefordUSA
  2. 2.Department of ChemistryUniversity of Southern MainePortlandUSA

Personalised recommendations