Synthesis and Characterization of SnO2/polypyrrole Nanocomposites by Hydrothermal Reverse Microemulsion

  • Libo Sun
  • Yuanchang Shi
  • Xiaochen Li
  • Kui Ding
  • Zhaopin He
  • Bo Li


Nanostructured tin dioxide (SnO2) was prepared by hydrothermal reverse microemulsion. The typical quaternary microemulsion was formed with surfactant cetyltrimethyl ammonium bromide, cosurfactant n-pentanol, n-hexane, and water. Tin chloride and urea was used as the starting material to synthesize SnO2 nanoparticles under hydrothermal conditions. After that, pyrrole monomer was added into the reverse microemulsion system and polymerized at 0 °C using ferric chloride (FeCl3) as the oxidant to synthesize SnO2/polypyrrole nanocomposites. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV–Vis spectroscopy, transmission electron microscopy (TEM) and scanning electron microscope (SEM). The XRD patterns suggested that polypyrrole (PPy) did not modify the crystal structure of SnO2. The particle size of SnO2 and SnO2/PPy was calculated by XRD as 3.9 and 3.6 nm, respectively. FT-IR and UV–Vis spectra proved that SnO2 was successfully enwrapped by PPy with an interaction between them. TEM and SEM analysis showed that SnO2 was enwrapped in micro-porous PPy. However, the diameter of the composites observed by TEM and SEM images was increased compared with the results calculated by XRD due to the agglomeration of nanoparticles.


Reverse microemulsion Hydrothermal synthesis Tin dioxide Polypyrrole Nanocomposites 


  1. 1.
    S. Chappel, S. Chen, A. Zaban, Langmuir 18, 3336 (2002)CrossRefGoogle Scholar
  2. 2.
    S. Wang, J. Huang, Y. Zhao, S. Wang, X. Wang, T. Zhang, S. Wu, S. Zhang, W. Huang, J. Mol. Catal. A: Chem. 259, 245 (2006)CrossRefGoogle Scholar
  3. 3.
    D. Leem, J. Song, H. Hong, J.S. Kwak, Y. Park, T. Seong, Electrochem. Solid-State Lett. 7, 219 (2004)CrossRefGoogle Scholar
  4. 4.
    Y. Gao, S. Wang, L. Kang, Z. Chen, J. Du, X. Liu, H. Luo, M. Kanehira, Energy Environ. Sci. 5, 8234 (2012)CrossRefGoogle Scholar
  5. 5.
    E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, Adv. Mater. 12, 965 (2000)CrossRefGoogle Scholar
  6. 6.
    Y. Sun, X. Huang, F. Meng, J. Liu, Sensors 4, 95 (2004)CrossRefGoogle Scholar
  7. 7.
    H. Kim, J. Cho, J. Mater. Chem. 18, 771 (2008)CrossRefGoogle Scholar
  8. 8.
    X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater. 18, 2325 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S. Kim, Langmuir 20, 6476 (2004)CrossRefGoogle Scholar
  10. 10.
    C. Fan, X. Song, Z. Yin, H. Yu, S. Sun, J. Mater. Sci. 41, 5696 (2006)CrossRefGoogle Scholar
  11. 11.
    F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119 (2004)CrossRefGoogle Scholar
  12. 12.
    J.X. Zhou, M.S. Zhang, J.M. Hong, J.L. Fang, Z. Yin, Appl. Phys. A 81, 177 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Kato, H. Unuma, T. Ota, M. Takahashi, J. Am. Ceram. Soc. 83, 986 (2000)CrossRefGoogle Scholar
  14. 14.
    K.S. Shamala, L.C.S. Murthy, K.N. Rao, Bull. Mater. Sci. 27, 295 (2004)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, S. Wang, M. Xu, Y. Wang, H. Xia, S. Zhang, X. Guo, S. Wu, J. Phys. Chem. C 113, 1662 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Xu, J. Zhang, S. Wang, X. Guo, H. Xia, Y. Wang, S. Zhang, W. Huang, S. Wu, Sens. Actuators, B 146, 8 (2010)CrossRefGoogle Scholar
  17. 17.
    M.K. Ram, O. Yavuz, M. Aldissi, Synth. Met. 151, 77 (2005)CrossRefGoogle Scholar
  18. 18.
    X. Ai, N. Anderson, J. Guo, J. Kowalik, L.M. Tolbert, T. Lian, J. Phys. Chem. B 110, 25496 (2006)CrossRefGoogle Scholar
  19. 19.
    S. Manjunath, A.K. Koppalkar, M.V.N.A. Prasad, Ferroelectrics 366, 22 (2008)CrossRefGoogle Scholar
  20. 20.
    Q. Shao, W. Chen, Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang, Electrochem. Commun. 13, 1431 (2011)CrossRefGoogle Scholar
  21. 21.
    L. Sun, Y. Shi, Z. He, B. Li, J. Liu, Synth. Met. 162, 2183 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Chen, L. Gao, J. Colloid Interface Sci. 279, 137 (2004)CrossRefGoogle Scholar
  23. 23.
    W. Zhang, X. Wen, S. Yang, Langmuir 19, 4420 (2003)CrossRefGoogle Scholar
  24. 24.
    H. Pang, C. Huang, J. Chen, B. Liu, Y. Kuang, X. Zhang, J. Solid State Electrochem. 14, 169 (2010)CrossRefGoogle Scholar
  25. 25.
    L. Sun, Y. Shi, L. Chu, F. Liu, J. Liu, J. Dispersion Sci. Technol. 33, 933 (2012)CrossRefGoogle Scholar
  26. 26.
    L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, S. Wu, Sens. Actuators, B 120, 568 (2007)CrossRefGoogle Scholar
  27. 27.
    D.Y. Kim, J.Y. Lee, D.K. Moon, C.Y. Kim, Synth. Met. 69, 471 (1995)CrossRefGoogle Scholar
  28. 28.
    V.S.R. Channu, R. Holze, Ionics 18, 495 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Libo Sun
    • 1
  • Yuanchang Shi
    • 1
  • Xiaochen Li
    • 1
  • Kui Ding
    • 1
  • Zhaopin He
    • 1
  • Bo Li
    • 1
  1. 1.Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinanPeople’s Republic of China

Personalised recommendations