Skip to main content
Log in

Dielectric Response in the First Silicon Phthalocyanine Network Polymer

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Unlike the well known silicon phthalocyanine polymers, which are only bridged polymers, the first silicon-phthalocyanine network polymer [PcSiCl2] x 6 was prepared from commercially available precursors. Based on previous modeling studies, elemental composition allowed for determination of both the shape and the content of Pc units in the prepared polymer. The two-dimensional network structure was found to offer an extension of the conjugation of the 18-π electron system of the phthalocyanine and facilitate the charge mobility across the material. This was found to enhance the conductivity and dielectric properties of the material, relative to the analogue materials, by supporting the hoping conduction mechanism. Differential scanning calorimetry was used to follow the non-oxidative thermal degradation of the prepared polymeric material. An interesting phenomenon, water effusion, was detected and proved to play a role in the conduction mechanism. Electrical and dielectric measurements were carried out at different frequencies. The polymer has extremely high values of the permittivity ε′ and dielectric loss ε″ at lower frequencies that decrease gradually with increasing frequency. The relaxation peak at lower frequencies showed without doubt that the moisture enhances the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. McKeown, Capital 9, Science of synthesis, vol. 17 (Thieme Chemistry, Rochdale, 2005)

    Google Scholar 

  2. C. Leznoff, A. Lever, Phthalocyanines: properties and applications, vol. 1 (VCH Publishers, New York, 1989). references cited therein

    Google Scholar 

  3. C.S. Marvell, J.H. Rassweiler, J. Am. Chem. Soc. 80, 1197–1199 (1958)

    Article  Google Scholar 

  4. N. Phougat, P. Vasudevan, H.S. Nalwa, Materials and processing, in Chapter 8 in handbook of low and high dielectric constant materials and their applications, vol. 1, ed. by H.S. Nalwa (Academic Press, Hitachi, 1999)

    Google Scholar 

  5. C. Boscornea, St Tomas, L.G. Hinescu, C. Tarabasaanu-Mihaila, J. Mater. Process. Technol. 119, 344–347 (2001)

    Article  CAS  Google Scholar 

  6. D. Boston, J. Bailar, Inorg. Chem. 11, 1578–1583 (1972)

    Article  CAS  Google Scholar 

  7. L. Kreja, A. Plewka, Electrochim. Acta 25, 1283–1286 (1980)

    Article  CAS  Google Scholar 

  8. H. Nalwa, J. Sinha, P. Vasudevan, Makromol. Chem. 182, 811–815 (1981)

    Article  CAS  Google Scholar 

  9. B. Achar, G. Fohlen, J. Parker, J. Polym. Sci. Polym. Lett. Ed. 20, 1785–1789 (1982)

    Article  CAS  Google Scholar 

  10. D. Wöhrle, E. Preußner, Makromol. Chem. 186, 2189–2207 (1985)

    Article  Google Scholar 

  11. P.C. Lo, S. Wang, A. Zeug, M. Meyer, B. Roeder, D. Ng, Tetrahedron Lett. 44, 1967–1970 (2003)

    Article  CAS  Google Scholar 

  12. N. Akdemir, E. Agar, S. Sasmaz, I.E. Guemruekcueoglu, T. Celebi, Dyes Pigments 69, 1–6 (2006)

    Article  CAS  Google Scholar 

  13. P. Stihler, B. Hauschel, M. Hanack, Chem. Ber. 130, 801 (1979)

    Article  Google Scholar 

  14. B.N. Achar, G.M. Fohlen, K.S. Lokesh, T.M. Mohan Kumar, Int. J. Mass Spectrom. 243, 199–204 (2005)

    Article  CAS  Google Scholar 

  15. B.N. Achar, K.S. Lokesh, J. Organomet. Chem. 689, 2601–2605 (2004)

    Article  CAS  Google Scholar 

  16. Wael Darwish, Thesis Dr. rer. Nat., Philipps University, Marburg, Germany. (http://deposit.ddb.de/cgi-bin/dokserv?idn=980818613). Accessed March, 2006

  17. J.F. Van der Pol, J.W. Zwikker, Recl. Trav. Chim. Pays-Bas 109, 208–215 (1990)

    Google Scholar 

  18. M. Mella, E. Fasani, A. Albini, J. Org. Chem. 57, 3051–3057 (1992)

    Article  CAS  Google Scholar 

  19. C.J. Norrel, H.A. Pohl, M. Thompson, K.D. Berlin, J. Polym. Sci. Polym. Phys. Edn. 12, 913 (1974)

    Article  Google Scholar 

  20. N. Kobayashi, H. Lam, W. Andrew Nevin, P. Jandaa, C.C. Leznoff, T. Koyama, A. Monden, H. Shira, J. Am. Chem. Soc. 116, 879–890 (1994)

    Article  CAS  Google Scholar 

  21. R.D. Joyner, M.E. Kenney, Inorg. Chem. 1, 236 (1962)

    Article  CAS  Google Scholar 

  22. M.K. Lowery, A.J. Starshak, J.N. Esposito, P.C. Krueger, M.E. Kenney, Inorg. Chem. 4, 128 (1965)

    Article  CAS  Google Scholar 

  23. B.L. Wheeler, G. Nagasubramanian, A.J. Bard, L.A. Schechtman, D.R. Dininny, M.E. Kenney, J. Am. Chem. Soc. 106, 7404 (1984)

    Article  CAS  Google Scholar 

  24. D. Wöhrle, B. Schulte, Makromol. Chem. 186, 2229–2245 (1985)

    Article  Google Scholar 

  25. R. Bannehr, N. Jaeger, G. Meyer, D. Wöhrle, Makromol. Chem. 182, 2633–2639 (1981)

    Article  CAS  Google Scholar 

  26. J.H. Tian, I.J. Wang, Dyes Pigm. 29, 181–190 (1995)

    Article  CAS  Google Scholar 

  27. V. Iliev, A. Mihaylova, J. Photochem. Photobiol. A. Chemistry 149, 23–30 (2002)

    CAS  Google Scholar 

  28. Lukasz Lapok, Thesis-Dr. rer. Nat., Bremen University, Germany, pages 187 and 188 (http://d-nb.info/987483811/34). Accessed September (2006)

  29. V. Mantareva, I. Angelov, V. Kussovski, R. Dimitrov, L. Lapok, D. Woehrle, Eur. J. Med. Chem. 46, 4430 (2011)

    Article  CAS  Google Scholar 

  30. D. Wöhrle, U. Huendorf, Makromol. Chem. 186, 2177–2178 (1985)

    Article  Google Scholar 

  31. D.L. Ledson, M.V. Twigg, Inorg. Chim. Acta 13, 43 (1975)

    Article  CAS  Google Scholar 

  32. S. Gaspard, M. Verdaguer, R. Viovy, J. Chem. Res. (S), 271 (1979)

  33. B.D. Berezin, Coordination compounds of porphyrins and phthalocyanines (Wiley, New York, 1981)

    Google Scholar 

  34. L.K. Lee, N.H. Sabelli, P.R. LeBerton, J. Phys. Chem. 86, 3926 (1982)

    Article  CAS  Google Scholar 

  35. A.B.P. Lever, S. Licoccia, K. Magnell, P.C. Minor, B.S. Ramaswamy, Adv. Chem. Ser. 201, 237 (1982)

    Article  CAS  Google Scholar 

  36. Y. Peng, F. Huang, J. Weng, B. Huang, X. Ma, J. Coord. Chem. 61, 1503–1512 (2008)

    Article  CAS  Google Scholar 

  37. W. Darwish, E. Seikel, R. Kaesmarker, K. Harms, J. Sundermeyer, Dalton Trans. 40, 1787–1794 (2011)

    Article  CAS  Google Scholar 

  38. U. Keppeler, M. Hanack, Chem. Ber. 119, 3363 (1986)

    Article  CAS  Google Scholar 

  39. L. Zhi, T. Gorelik, R. Friedlein, J. Wu, U. Kolb, W.R. Salaneck, K. Muellen, Small 1, 798–801 (2005)

    Article  CAS  Google Scholar 

  40. L. Grzadziel, M. Krzywiecki, H. Peisert, T. Chasse, J. Szuber, Thin Solid Films 519, 2187–2192 (2011)

    Article  CAS  Google Scholar 

  41. X. Yan, H. Wang, D. Yan, Thin Solid Films 515, 2655 (2006)

    Article  CAS  Google Scholar 

  42. I. Zhivkov, S. Nespurek, F. Schauer, Adv. Mater. Opt. Electron. 9, 175 (1999)

    Article  CAS  Google Scholar 

  43. H.R. Kerp, E.E. van Faassen, Sol. Energy Mater. Sol. Cells 63, 15–21 (2000)

    Article  CAS  Google Scholar 

  44. J. Sangoro, G. Turky, M. Abdel Rehim, C. Jacob, S. Naumov, A. Ghoneim, J. Aerger, F. Kremer, Macromolecules 42, 1648 (2009)

    Article  CAS  Google Scholar 

  45. G. Turky, J. Sangoro, M. Abdel Rehim, F. Kremer, J. Polym. Sci. 48, 1651 (2010)

    Article  CAS  Google Scholar 

  46. G. Turky, S. Shaaban, A. Schoenhals, J. Appl. Polym. Sci. 113, 2477 (2009)

    Article  CAS  Google Scholar 

  47. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78, 2160 (1997)

    Article  CAS  Google Scholar 

  48. D.L. Sidebottom, Phys. Rev. Lett. 82, 3653 (1999)

    Article  CAS  Google Scholar 

  49. H. Namikawa, J. Non-Cryst. Solids 18, 173 (1975)

    Article  CAS  Google Scholar 

  50. C. CIacob, J.R. Sangoro, A. Serghei, S. Naumov, Y. Korth, J. Kaerger, C. Friedrich, F. Kremer, J. Chem. Phys. 129, 234511 (2008)

    Article  Google Scholar 

  51. D. Zielniok, H. Eckert, C. Cramer, Phys. Rev. Lett. 100, 3590 (2008)

    Article  Google Scholar 

  52. B.N. Achar, P.K. Jayasree, Indian J. Chem. 38A, 1164 (1999)

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of (National Research Centre, Dokki, Giza, Egypt) within the In-house research project number 914-01-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Darwish.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darwish, W., Turky, G. Dielectric Response in the First Silicon Phthalocyanine Network Polymer. J Inorg Organomet Polym 24, 347–354 (2014). https://doi.org/10.1007/s10904-013-9962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-013-9962-2

Keywords

Navigation