Advertisement

Synthesis and Characterization of Hierarchical Biomorphic Mesoporous TiO2 Nanosheets Using Caltrop-Stem as Biotemplate

  • Jing You
  • Guizhen Cao
Article

Abstract

Biomorphic TiO2 nanosheets with hierarchical mesoporous structures were synthesized through facile infiltration and thermal decomposition using caltrop stems as biotemplates. Thermo-gravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscope, atomic force microscopy, N2 adsorption–desorption equipment and UV–visible diffuse reflectance spectra were applied to characterize the microstructures of the samples. Results indicate that the as-synthesized TiO2 nanosheets with thickness of about 5 nm are composed of anatase phase. The surfaces of TiO2 nanosheets were constructed by a large number of mesopores, which pore diameter is in the range of 3.5–9 nm. Compared to TiO2 powders (P25), the as-synthesized TiO2 nanosheets exhibit a clear red shift (20 nm) showing an enhanced visible photocatalytic activity. The photocatalytic activity of the TiO2 nanosheets for the decolorization of methylene blue under sunlight irradiation is superior to P25 powders.

Keywords

Biotemplate Titania Nanosheet Mesopores Photocatalysis 

Notes

Acknowledgments

This work is supported by the National Science Foundation of China (NSFC21071107).

References

  1. 1.
    A. Dong, Y.J. Wang, Y. Tang, N. Ren, Y.H. Zhang, Y.H. Yue, Z. Gao, Adv. Mater. 12, 926 (2002)CrossRefGoogle Scholar
  2. 2.
    S.R. Hall, V.M. Swinerd, F.N. Newby, A.M. Collins, S. Mann, Chem. Mater. 18, 598 (2006)CrossRefGoogle Scholar
  3. 3.
    X. Li, T. Fan, H. Zhou, S.K. Chow, W. Zhang, D. Zhang, Q. Guo, H. Ogawa, Adv. Funct. Mater. 19, 45 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Liu, Q. Zhao, H. Zhou, J. Ding, D. Zhang, H. Zhu, T. Fan, Phys. Chem. Chem. Phys. 13, 10872 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Zhou, T. Fan, D. Zhang, Microporous Mesoporous Mater. 100, 322 (2007)CrossRefGoogle Scholar
  6. 6.
    X. Liu, Y. Gu, J. Huang, Chem. Eur. J. 16, 7730 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, M. Wei, J. Lu, Z. Wang, X. Duan, ACS Nano 3, 4009 (2009)CrossRefGoogle Scholar
  8. 8.
    K.J.C. van Bommel, A. Friggeri, S. Shinkai, Angew. Chem. Int. Ed. 42, 980 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Huang, X. Wang, X. Wang, Z. Wang, Nano Lett. 6, 2325 (2006)CrossRefGoogle Scholar
  10. 10.
    A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
  11. 11.
    S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito, T. Sato, J. Mater. Chem. 13, 2996 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)CrossRefGoogle Scholar
  13. 13.
    L. Pan, J.J. Zou, X. Zhang, L. Wang, J. Am. Chem. Soc. 133, 10000 (2011)CrossRefGoogle Scholar
  14. 14.
    A.M. Nadeem, G.I.N. Waterhouse, H. Idriss, Catal. Today 182, 16 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Chin, E. Park, M. Kim, G.N. Bae, J. Jurng, Mater. Lett. 75, 57 (2012)CrossRefGoogle Scholar
  16. 16.
    V.C. Papadimitrioua, V.G. Stefanopoulosa, M.N. Romaniasa, P. Papagiannakopoulosa, K. Sambanib, V. Tudoseb, G. Kiriakidisb, Thin Solid Films 520, 1195 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Photochem. Photobiol. A 180, 196 (2006)CrossRefGoogle Scholar
  18. 18.
    A.V. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, J. Hazard. Mater. 147, 906 (2007)CrossRefGoogle Scholar
  19. 19.
    S. Sakthivel, M. Janczarek, H. Kisch, J. Phys. Chem. B 108, 19384 (2004)CrossRefGoogle Scholar
  20. 20.
    Y. Choi, T. Umebayashi, M. Yoshikawa, J. Mater. Sci. 39, 1837 (2004)CrossRefGoogle Scholar
  21. 21.
    T. Umebayashi, T. Yamaki, S. Tanaka, K. Asail, Chem. Lett. 32, 330 (2003)CrossRefGoogle Scholar
  22. 22.
    T. Zhu, J. Li, Q. Wu, ACS Appl. Mater. Interfaces 3, 3448 (2011)CrossRefGoogle Scholar
  23. 23.
    J. Qian, F. Chen, X. Zhao, Z. Chen, J. Nanopart. Res. 13, 7149 (2011)CrossRefGoogle Scholar
  24. 24.
    T. Fan, S.K. Chow, D. Zhang, Prog. Mater. Sci. 54, 542 (2009)CrossRefGoogle Scholar
  25. 25.
    D. Gust, D. Kramer, A. Moore, T.A. Moore, W. Vermaas, Mater. Res. Soc. Bull. 33, 383 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Aceituno, C.D. Stalikas, L. Lunar, S. Rubio, D. Pérez-Bendito, Water Res. 36, 3582 (2002)CrossRefGoogle Scholar
  27. 27.
    M. Mrowetz, E. Selli, New J. Chem. 30, 108 (2006)CrossRefGoogle Scholar
  28. 28.
    F. Cao, D. Li, Bioinspir. Biomim. 5, 16005 (2010)CrossRefGoogle Scholar
  29. 29.
    M.Z. Hussein, W.H. Azmin, M. Mustafa, A.H. Yahaya, J. Ionrg. Biochem. 103, 1145 (2009)CrossRefGoogle Scholar
  30. 30.
    W. He, J. Cui, Y. Yue, X. Zhang, X. Xia, H. Liu, S. Lui, J. Colloid Interface Sci. 354, 109 (2011)CrossRefGoogle Scholar
  31. 31.
    D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18, 2807 (2006)CrossRefGoogle Scholar
  32. 32.
    A. Riss, T. Berger, H. Grothe, J. Bernardi, O. Diwald, E. Knözinger, Nano Lett. 7, 433 (2007)CrossRefGoogle Scholar
  33. 33.
    X.X. Yu, J.G. Yu, B. Cheng, M. Jaroniec, J. Phys. Chem. C 113, 17527 (2009)CrossRefGoogle Scholar
  34. 34.
    P. Jiang, J.J. Zhou, H.F. Fang, C.Y. Wang, Z.L. Wang, S.S. Xie, Adv. Funct. Mater. 17, 1303 (2007)CrossRefGoogle Scholar
  35. 35.
    J.G. Yu, Y.R. Su, B. Cheng, Adv. Funct. Mater. 17, 1984 (2007)CrossRefGoogle Scholar
  36. 36.
    J.G. Yu, L.J. Zhang, B. Cheng, Y.R. Su, J. Phys. Chem. C 111, 10582 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Changzhou UniversityChangzhouPeople’s Republic of China
  2. 2.1st Machinery Works of CNPC Bohai Equipment Manufacturing Co., Ltd.Qing CountyPeople’s Republic of China

Personalised recommendations