Syntheses and Structures of Octamethylmetallocenes of Osmium

  • Elizabeth M. Ochoa
  • Alex W. Watson
  • Erin N. Fagnan
  • Robert D. Pike
  • Eric J. Watson


The reaction of sodium hexachloroosmate(IV) hydrate with five equivalents of tetramethylcyclopentadiene (C5Me4H2) in refluxing ethanol yielded the novel coordination compound bis(tetramethylcyclopentadienyl)chloroosmocinium(IV) hexachloroosmate, [(η 5-C5Me4H)2OsCl]2[OsCl6] (1). Compound 1 has been characterized by NMR spectroscopy, elemental analysis and single-crystal X-ray diffraction. The cationic complex of 1 [(η 5-C5Me4H)2OsCl]+, adopts a bent geometry with a ring centroid-osmium-ring centroid angle of 146.2° and an eclipsed conformation of its two tetramethylcyclopentadienyl rings. The addition of zinc powder to sodium hexachloroosmate(IV) hydrate and five equivalents of tetramethylcyclopentadiene in refluxing ethanol produced the known compound, bis(tetramethylcyclopentadienyl)osmium, (η 5-C5Me4H)2Os (2). The crystal structure of 2 has been determined and it reveals an eclipsed arrangement of the tetramethylcyclopentadienyl rings in the solid state. The average Os–Cring bond length in octamethylosmocene 2 (2.187 Å) is in accordance with corresponding bond lengths in osmocene, (η 5-C5H5)2Os (2.19 Å) and decamethylosmocene, (η 5-C5Me5)2Os (2.18 Å).


Octamethylosmocene Bis(tetramethylcyclopentadienyl)osmium Osmium Tetramethylcyclopentadiene Octamethylmetallocene 



This article is dedicated in memoriam to Professor Dwight A. Sweigart. This research was supported by an award from Research Corporation for Science Advancement (Award # 20904), the M.J. Murdock Charitable Trust (A.W.A. and E.N.F.), the Peach Foundation (E.M.O.) and Seattle University. RDP thanks the NSF and the College of William and Mary for the purchase of the X-ray equipment.


  1. 1.
    A. Ceccon, S. Santi, L. Orian, A. Bisello, Coord. Chem. Rev. 248, 683 (2004)CrossRefGoogle Scholar
  2. 2.
    P. Aguirre-Etcheverry, D. O’Hare, Chem. Rev. 110, 4839 (2010)CrossRefGoogle Scholar
  3. 3.
    D. Astruc, Acc. Chem. Res. 30, 383 (1997)CrossRefGoogle Scholar
  4. 4.
    P. Parida, E.A. Basheer, S.K. Pati, J. Mater. Chem. 22, 14916 (2012)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, Z. Tian, S.-W. Yang, J. Wang, J. Phys. Chem. C 115, 2948 (2011)CrossRefGoogle Scholar
  6. 6.
    C. Morari, H. Allmaier, F. Beiuşeanu, T. Jurcuţ, L. Chioncel, Phys. Rev. B 85, 85413 (2012)CrossRefGoogle Scholar
  7. 7.
    M.I. Bruce, B. Le Guennic, N. Scoleri, N.N. Zaitseva, J.-F. Halet, Organometallics 31, 4701 (2012)CrossRefGoogle Scholar
  8. 8.
    E.J. Watson, K.L. Virkaitis, H. Li, A.J. Nowak, J.S. D’Acchioli, K. Yu, G.B. Carpenter, Y.K. Chung, D.A. Sweigart, Chem. Commun. 5, 457 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Oh, J.A. Reingold, G.B. Carpenter, D.A. Sweigart, Coord. Chem. Rev. 248, 561 (2004)CrossRefGoogle Scholar
  10. 10.
    J.A. Reingold, K.L. Virkaitis, G.B. Carpenter, S. Sun, D.A. Sweigart, P.T. Czech, K.R. Overly, J. Am. Chem. Soc. 127, 11146 (2005)CrossRefGoogle Scholar
  11. 11.
    S.K. Ghag, M.L. Tarlton, E.A. Henle, E.M. Ochoa, A.W. Watson, L.N. Zakharov, E.J. Watson, Organometallics 32, 1851 (2013)CrossRefGoogle Scholar
  12. 12.
    SMART Apex II, Data Collection Software, version 2.1; Bruker AXS Inc. Madison (2005)Google Scholar
  13. 13.
    SAINT Plus, Data Reduction Software, version 7.34a Madison (2005)Google Scholar
  14. 14.
    G.M. Sheldrick, SADABS (University of Gottingen, Gottingen, 2005)Google Scholar
  15. 15.
    G.M. Sheldrick, Acta Crystallogr. A 64, 112 (2008)CrossRefGoogle Scholar
  16. 16.
    C.L. Gross, S.R. Wilson, G.S. Girolami, Inorg. Chem. 34, 2582 (1995)CrossRefGoogle Scholar
  17. 17.
    P.W. Dickinson, G.S. Girolami, J. Organomet. Chem. 691, 2883 (2006)CrossRefGoogle Scholar
  18. 18.
    D.C. Liles, A. Shaver, E. Singleton, M.B. Wiege, J. Organomet. Chem. 288, C33 (1985)CrossRefGoogle Scholar
  19. 19.
    M.O. Albers, D.C. Liles, D.J. Robinson, A. Shaver, E. Singleton, M.B. Wiege, J.C.A. Boeyens, D.C. Levendis, Organometallics 5, 2321 (1986)CrossRefGoogle Scholar
  20. 20.
    M.O. Albers, D.J. Robinson, E. Singleton, Coord. Chem. Rev. 79, 1 (1986)CrossRefGoogle Scholar
  21. 21.
    J. Shimei, L. Li, Y. Guangdi, L. Juzheng, Jiegou Huaxue 7, 222 (1988)Google Scholar
  22. 22.
    J.C.A. Boeyens, D.C. Levendis, M.I. Bruce, M.L. Williams, J. Crystallogr. Spectrosc. Res. 16, 519 (1986)CrossRefGoogle Scholar
  23. 23.
    D. O′Hare, J.C. Green, T.P. Chadwick, J.S. Miller, Organometallics 7, 1335 (1988)CrossRefGoogle Scholar
  24. 24.
    S. Carter, J.N. Murrel, J. Organomet. Chem. 192, 399 (1980)CrossRefGoogle Scholar
  25. 25.
    D. Schmitz, J. Fleischhauer, U. Meier, W. Schleker, G. Schmitt, J. Organomet. Chem. 205, 381 (1981) CrossRefGoogle Scholar
  26. 26.
    Y.T. Struchkov, V.G. Andrianov, T.N. Salnikova, I.R. Lyatifov, R.B. Materikova, J. Organomet. Chem. 145, 213 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Elizabeth M. Ochoa
    • 1
  • Alex W. Watson
    • 1
  • Erin N. Fagnan
    • 1
  • Robert D. Pike
    • 2
  • Eric J. Watson
    • 1
  1. 1.Department of ChemistrySeattle UniversitySeattleUSA
  2. 2.Department of ChemistryCollege of William and MaryWilliamsburgUSA

Personalised recommendations