Advertisement

Syntheses, Crystal Structures, Thermal Stabilities and Luminescent Properties of Two Pillared Layered Alkaline–Earth Coordination Polymers

  • Pengfei Wang
  • Guozhi Wu
  • Jiaojiao Yuan
  • Xin Wang
Article

Abstract

Two new three-dimensional pillared layered coordination polymers, [M(2,5-PDC)H2O]n [M(II) = Sr(1), Ba (2)] were synthesized under hydrothermal conditions using alkaline–earth metal centers strontium and barium with 2,5-pyridinedicarboxylic acid as the organic ligand. The structures of two compounds have been determined by single-crystal X-ray diffraction analyses and further characterized by IR spectrum, elemental analyses, powder X-ray diffraction, and thermogravimetric analyses. The compounds are isostructural, confirmed by their powder XRD measurements. They feature a pillared layered framework structures. Within the layer, the dinuclear [M2O2] units through the bridge of the coordination water molecule are found, which are connected by carboxylate groups along the a- and b-axis, respectively. The layers are further pillared by the pyridyl groups of the 2,5-PDC2− ligands. Furthermore, the luminescent properties of two compounds have also been investigated in the solid state.

Keywords

Coordination polymer Alkaline–earth Crystal structure Luminescence 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 21101019) and the Key Subject of Chizhou College (2011XK04). We also thank Prof. Li-Min Zheng and Dr. Zhong-Sheng Cai at Nanjing University for the physical properties measurements.

Supplementary material

10904_2013_9906_MOESM1_ESM.doc (304 kb)
CCDC 936685 and 936686 contains the supplementary crystallographic data for compounds 1 and 2, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_reques/cif. The other supplementary materials (including the IR spectrum, PXRD patterns of two compounds, and the structure figures of compound 2) are provided. (DOC 303 kb)

References

  1. 1.
    W.-M. Xuan, C.-F. Zhu, Y. Liu, Y. Cui, Chem. Soc. Rev. 41, 1677 (2012)CrossRefGoogle Scholar
  2. 2.
    J.K. Schnobrich, O. Lebel, K.A. Cychosz, A. Dailly, A.G. Wong-Foy, A.J. Matzger, J. Am. Chem. Soc. 132, 13941 (2010)CrossRefGoogle Scholar
  3. 3.
    O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 705 (2003)CrossRefGoogle Scholar
  4. 4.
    K. Biradha, C.Y. Su, J.J. Vittal, Cryst. Growth Des. 11, 875 (2011)CrossRefGoogle Scholar
  5. 5.
    H–.H. Wu, Q.-H. Gong, D.H. Olson, J. Li, Chem. Rev. 112, 836 (2012)CrossRefGoogle Scholar
  6. 6.
    J.-R. Li, J.L. Sculley, H.-C. Zhou, Chem. Rev. 112, 869 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Kitagawa, R. Kitaura, S.I. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004)CrossRefGoogle Scholar
  8. 8.
    O. Kahn, Acc. Chem. Res. 33, 647 (2000)CrossRefGoogle Scholar
  9. 9.
    Y.-J. Cui, Y.-F. Yue, G.-D. Qian, B.-L. Chen, Chem. Rev. 112, 1126 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.-W. Li, H. Ma, Y.-Q. Chen, K.-H. He, Z.-X. Li, X.-H. Bu, Cryst. Growth Des. 12, 189 (2012)CrossRefGoogle Scholar
  11. 11.
    X.-H. Chang, L.-F. Ma, G. Hui, L.-Y. Wang, Cryst. Growth Des. 12, 3638 (2012)CrossRefGoogle Scholar
  12. 12.
    W.-G. Lu, D.-C. Zhong, L. Jiang, T.-B. Lu, Cryst. Growth Des. 12, 3675 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, Z. Chen, J. Ren, X.-Q. Zhao, P. Cheng, B. Zhao, Inorg. Chem. 51, 7433 (2012)CrossRefGoogle Scholar
  14. 14.
    W.-W. Dong, D.-S. Li, J. Zhao, Y.-P. Wu, Y.-Y. Wang, Inorg. Chem. Commun. 21, 53 (2012)CrossRefGoogle Scholar
  15. 15.
    R. Cao, J. Lü, S.R. Batten, CrystEngComm 10, 784 (2008)CrossRefGoogle Scholar
  16. 16.
    E.H.L. Falcão Naraso, R.K. Feller, G. Wu, F. Wudl, A.K. Cheetham, Inorg. Chem. 47, 8336 (2008)CrossRefGoogle Scholar
  17. 17.
    D. Laurencin, C. Gervais, A. Wong, C. Coelho, F. Mauri, D. Massio, M.E. Smith, C. Bonhomme, J. Am. Chem. Soc. 131, 13430 (2009)CrossRefGoogle Scholar
  18. 18.
    D. Banerjee, Z.-J. Zhang, A.M. Plonka, J. Li, J.B. Paris, Cryst. Growth Des. 12, 2162 (2012)CrossRefGoogle Scholar
  19. 19.
    A.M. Plonka, D. Banerjee, J.B. Parise, Cryst. Growth Des. 12, 2460 (2012)CrossRefGoogle Scholar
  20. 20.
    B. Zhao, X.-Y. Chen, P. Cheng, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang, J. Am. Chem. Soc. 126, 15394 (2004)CrossRefGoogle Scholar
  21. 21.
    S.K. Ghosh, P.K. Bharadwaj, Inorg. Chem. 44, 3156 (2005)CrossRefGoogle Scholar
  22. 22.
    J. Xu, W.-P. Su, M.-C. Hong, Cryst. Growth Des. 11, 337 (2011)CrossRefGoogle Scholar
  23. 23.
    SAINT version 6.02a, Software Reference Manual (Bruker AXS Inc, Madison, WI, 2002)Google Scholar
  24. 24.
    G.M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures (University of Göttingen, Germany, 1997)Google Scholar
  25. 25.
    G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures (University of Göttingen, Germany, 1997)Google Scholar
  26. 26.
    X.-Y. Chen, A.M. Plonka, D. Banerjee, J.B. Parise, Cryst. Growth Des. 13, 326 (2013)CrossRefGoogle Scholar
  27. 27.
    G. Tian, G.-S. Zhu, X.-Y. Yang, Q.-R. Fang, M. Xue, J.-Y. Sun, Y. Wei, S.-L. Qiu, Chem. Commun. 2005, 1396 (2005)CrossRefGoogle Scholar
  28. 28.
    Y. Xu, D.-Q. Yuan, Z.-Z. Lin, B.-L. Wu, J.-H. Luo, M.-C. Hong, Chin. J. Struct. Chem. 23, 1230 (2004)Google Scholar
  29. 29.
    Y.-G. Huang, X.-T. Wang, F.-L. Jiang, S. Gao, M.-Y. Wu, Q. Gao, W. Wei, M.-C. Hong, Chem. Eur. J. 14, 10340 (2008)CrossRefGoogle Scholar
  30. 30.
    N. Wang, S.-T. Yue, Y.-L. Liu, H.-Y. Yang, H.-Y. Wu, Cryst. Growth Des. 9, 368 (2009)CrossRefGoogle Scholar
  31. 31.
    F.-N. Shi, L. Cunha-Silva, T. Trindade, F.A. Almeida Paz, J. Rocha, Cryst. Growth Des. 09, 2098 (2009)CrossRefGoogle Scholar
  32. 32.
    D. Saha, R. Sen, T. Maity, S. Koner, Dalton Trans. 41, 7399 (2012)CrossRefGoogle Scholar
  33. 33.
    P.-F. Wang, G.-Z. Wu, X. Wang, J. Inorg. Organomet. Polym. Mater. 22, 1377 (2012)CrossRefGoogle Scholar
  34. 34.
    X.-Y. Duan, J.-G. Lin, Y.-Z. Li, C.-J. Zhu, Q.-J. Meng, CrystEngComm 10, 207 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Fan, H.-F. Zhu, T-a Okamura, W.-Y. Sun, W.-X. Tang, N. Ueyama, New J. Chem. 27, 1409 (2003)CrossRefGoogle Scholar
  36. 36.
    B.-L. Chen, L. Wang, Y. Xiao, F.R. Fronczek, M. Xue, Y. Cui, G.-D. Qian, Angew. Chem. Int. Ed. 48, 500 (2009)CrossRefGoogle Scholar
  37. 37.
    W.-S. Liu, T.-Q. Jiao, Y.-Z. Li, Q.-Z. Liu, M.-Y. Tan, H. Wang, L.-F. Wang, J. Am. Chem. Soc. 126, 2280 (2004)CrossRefGoogle Scholar
  38. 38.
    X. Zhang, Y.-Y. Huang, M.-J. Zhang, J. Zhang, Y.-G. Yao, Cryst. Growth Des. 12, 3231 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pengfei Wang
    • 1
  • Guozhi Wu
    • 1
  • Jiaojiao Yuan
    • 1
  • Xin Wang
    • 1
  1. 1.Department of Materials and Chemical Engineering, Center of Chemical Materials and Engineering ExperimentChizhou CollegeChizhouPeople’s Republic of China

Personalised recommendations