A Luminescent Rod-Packing Organic–Inorganic Hybrid Framework Based on Copper(I) Cyanide Ribbon and 5-(4-Pyridine)tetrazole Ligand

  • Quan-Guo Zhai
  • Shuang-Qiu Chen
  • Shu-Ni Li
  • Yu-Cheng Jiang
  • Man-Cheng Hu


The hydrothermal reaction of CuCN, K3Fe(CN)6 and 5-(4-pyridine)tetrazole generated a novel three-dimensional organic–inorganic hybrid framework, namely, {Cu3(5PyTAZ)(CN)2} n (1) (5PyTAZ = 5-(4-pyridine)tetrazole). X-ray single-crystal diffraction shows that two independent Cu(I) centers are four-coordinate tetrahedral and three-coordinate trigonal geometries, which are connected by μ 3-CN groups to form a 1D [Cu3(CN)2] n inorganic ribbon along the c-axis direction. Each 5PyTAZ ligand links four adjacent inorganic ribbons via its five N-atoms to generate a complex 3D hybrid structure. If the 1D copper(I) cyanide ribbon was regarded as rod-shape building block, 1 exhibits a simple rod-packing topological framework. Furthermore, 1 is characterized by X-ray powder diffraction, elemental analysis, FT-IR, Raman spectra and TG/DTA. Notably, solid-state luminescence measurements indicate that 1 is a potential photoluminescence material.


Copper(I) cyanide 5-(4-Pyridine)tetrazole Crystal structure Rod-packing topology Photoluminescence 



This work is financially supported by the National Natural Science Foundation of China (21271123), New Century Excellent Talents in University (NCET-12-0897), and the Fundamental Research Funds for the Central Universities (GK201102004).


  1. 1.
    D.J. Chesnut, A. Kusnetzow, R. Birge, J. Zubieta, Inorg. Chem. 38, 5484 (1999)CrossRefGoogle Scholar
  2. 2.
    D. J. Chesnut, J. Zubieta, Chem. Commun., 1707 (1998)Google Scholar
  3. 3.
    F.B. Stocker, T.P. Staeva, C.M. Rienstra, D. Britton, Inorg. Chem. 38, 984 (1999)CrossRefGoogle Scholar
  4. 4.
    Z. Li, M. Li, S.Z. Zhan, X.C. Huang, S.W. Ng, D. Li, CrystEngComm. 10, 978 (2008)CrossRefGoogle Scholar
  5. 5.
    F. Wang, J. Zhang, S.M. Chen, Y.M. Xie, X.Y. Wu, S.C. Chen, R.M. Yu, C.Z. Lu, CrystEngComm. 11, 1562 (2009)Google Scholar
  6. 6.
    P.J. Steel, Acc. Chem. Res. 38, 243 (2005)CrossRefGoogle Scholar
  7. 7.
    J. P. Zhang, X. M. Chen, Chem. Commun., 1689 (2006)Google Scholar
  8. 8.
    J.P. Zhang, X.C. Huang, X.M. Chen, Chem. Soc. Rev. 38, 2385 (2009)CrossRefGoogle Scholar
  9. 9.
    G. Aromia, L.A. Barriosa, O. Roubeaub, P. Gameza, Coord. Chem. Rev. 255, 485 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Liu, W. Shi, P. Cheng, Dalton Trans. 40, 8475 (2011)CrossRefGoogle Scholar
  11. 11.
    J.P. Zhang, Y.B. Zhang, J.B. Lin, X.M. Chen, Chem. Rev. 112, 1001 (2012)CrossRefGoogle Scholar
  12. 12.
    X.M. Zhang, Y.F. Zhao, W.X. Zhang, X.M. Chen, Adv. Mater. 19, 2843 (2007)CrossRefGoogle Scholar
  13. 13.
    W. Ouellette, S. Jones, J. Zubieta, CrystEngComm. 13, 4457 (2011)CrossRefGoogle Scholar
  14. 14.
    Q.G. Zhai, X.Y. Wu, S.M. Chen, Z.G. Zhao, C.Z. Lu, Inorg. Chem. 46, 5046 (2007)CrossRefGoogle Scholar
  15. 15.
    Q.G. Zhai, M.C. Hu, S.N. Li, Y.C. Jiang, Inorg. Chem. Commun. 11, 1147 (2008)CrossRefGoogle Scholar
  16. 16.
    M.C. Hu, Y. Wang, Q.G. Zhai, S.N. Li, Y.C. Jiang, Y. Zhang, Inorg. Chem. 48, 1449 (2009)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, M.C. Hu, Q.G. Zhai, S.N. Li, Y.C. Jiang, W.J. Ji, Inorg. Chem. Commun. 12, 281 (2009)CrossRefGoogle Scholar
  18. 18.
    X. Gao, Q.G. Zhai, S.N. Li, R. Xia, H.J. Xiang, Y.C. Jiang, M.C. Hu, J. Solid State Chem. 183, 1150 (2010)CrossRefGoogle Scholar
  19. 19.
    Q.G. Zhai, X. Gao, S.N. Li, Y.C. Jiang, M.C. Hu, CrystEngComm. 13, 1602 (2011)CrossRefGoogle Scholar
  20. 20.
    Q.G. Zhai, S.N. Li, X. Gao, W.J. Ji, Y.C. Jiang, M.C. Hu, Inorg. Chem. Commun. 13, 211 (2010)CrossRefGoogle Scholar
  21. 21.
    G.M. Sheldrick, SADABS, program for area detector adsorption correction (University of Göttingen, Germany, 1996)Google Scholar
  22. 22.
    G.M. Sheldrick, SHELXS-97, program for the solution of crystal structures (University of Göttingen, Germany, 1997)Google Scholar
  23. 23.
    G.M. Sheldrick, SHELXL-97, program for the refinement of crystal structures (University of Göttingen, Germany, 1997)Google Scholar
  24. 24.
    X. He, C. Z. Lu, C. D. Wu, L. J. Chen, Eur. J. Inorg. Chem., 2491 (2006)Google Scholar
  25. 25.
    Y.L. Qin, J.J. Hou, J. Lv, X.M. Zhang, Cryst. Growth Des. 11, 3101 (2011)CrossRefGoogle Scholar
  26. 26.
    X.P. Zhou, S.H. Lin, D. Li, Y.G. Yin, CrystEngComm. 11, 1899 (2009)CrossRefGoogle Scholar
  27. 27.
    F. Wang, J. Zhang, S.M. Chen, Y.M. Xie, X.Y. Wu, S.C. Chen, R.M. Yu, C.Z. Lu, CrystEngComm. 11, 1526 (2009)CrossRefGoogle Scholar
  28. 28.
    C. Kutal, Coord. Chem. Rev. 99, 213 (1990)CrossRefGoogle Scholar
  29. 29.
    M. Vitale, C.K. Ryu, W.E. Palke, P.C. Ford, Inorg. Chem. 33, 561 (1994)CrossRefGoogle Scholar
  30. 30.
    M. Henary, J.L. Wootton, S.I. Khan, J.I. Zink, Inorg. Chem. 36, 796 (1997)CrossRefGoogle Scholar
  31. 31.
    P.C. Ford, E. Cariati, J. Bourasssa, Chem. Rev. 99, 3625 (1999)CrossRefGoogle Scholar
  32. 32.
    A. Barbieri, G. Accorsi, N. Armaroli, Chem. Commun., 2185 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Quan-Guo Zhai
    • 1
  • Shuang-Qiu Chen
    • 1
  • Shu-Ni Li
    • 1
  • Yu-Cheng Jiang
    • 1
  • Man-Cheng Hu
    • 1
  1. 1.Key Laboratory of Macromolecular Science of Shaanxi ProvinceSchool of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations