Ultrasensitive Electrochemiluminescence Immunoassay for Protein Specific Detection Based on Dendrimer-Encapsulated Gold Nanoparticles Labels

  • Shenguang Ge
  • Jinghua Yu
  • Xiuling Jiao
  • Dairong Chen


A sensitivity-enhanced electro chemiluminescence immunoassay (ECLIA) was fabricated by covalently immobilizing a monoclonal prostate specific antigen (PSA) antibody (anti-PSA, Ab2) and a luminophore (luminol) on dendrimer-encapsulated gold nanoparticles (Den/AuNPs) as electrochemiluminescence labels. The primary antibody was immobilized on Fe3O4@SiO2 NP support, and the antibody-loaded Fe3O4@SiO2 NP was placed onto an indium tin oxide working electrode in a home made electrochemiluminescence (ECL) cell. PSA and Ab2/Luminol/Den/AuNP was successively injected into the cell, and conjugated to form a sandwich-type immunocomplex. Under optimized experimental conditions, the proposed ECLIA provided a linear response range from 0.001 to 100.0 ng/mL with a low detection limit of 0.3 pg/mL. The PSA assay results in clinical serum samples were in good agreement with the commercially available electro chemiluminescence assay. The ECL immunosensor has the advantages of high sensitivity, specificity and stability and may be a promising technique for tumor marker detection.


Electrochemiluminescence immunoassay Dendrimer-encapsulated gold nanoparticles Fe3O4@SiO2 nanoparticles Luminol Prostate specific antigen 



This work was financially supported by the Natural Science Research Foundation of China (21207048), Major State Basic Research Development Program of China (973 Program) (no. 2010CB933504), Natural Science Foundation of Shandong Province, China (ZR2011BQ019), Youth Science and Technology Jinan star program (20110102) and State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences (KF2011-03).


  1. 1.
    S.J. Xu, Y. Liu, T.H. Wang, J.H. Li, Anal. Chem. 83, 3817 (2011)CrossRefGoogle Scholar
  2. 2.
    J.L. Munro, V.A. Boon, J. Agric. Food Chem. 58, 1429 (2010)CrossRefGoogle Scholar
  3. 3.
    Y.Q. Shang, R. Mernaugh, X.Q. Zeng, Anal. Chem. 84, 8164 (2012)CrossRefGoogle Scholar
  4. 4.
    S.J. Goldsmith, Semin. Nucl. Med. 5, 125 (1975)CrossRefGoogle Scholar
  5. 5.
    A.M. Teppo, C.P.J. Maury, Clin. Chem. 33, 2024 (1987)Google Scholar
  6. 6.
    L.C. Zhou, F. Ding, H. Chen, W. Ding, W.H. Zhang, S.Y. Chou, Anal. Chem. 84, 4489 (2012)CrossRefGoogle Scholar
  7. 7.
    T. Kreisig, R. Hoffmann, T. Zuchner, Anal. Chem. 83, 4281 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Kim, K. Karns, S.Q. Tia, M. He, A.E. Herr, Anal. Chem. 84, 2533 (2012)CrossRefGoogle Scholar
  9. 9.
    O. Trenchevska, E. Kamcheva, D. Nedelkov, J. Proteome Res. 9, 5969 (2010)CrossRefGoogle Scholar
  10. 10.
    G.S. Lai, F. Yan, H.X. Ju, Anal. Chem. 81, 9730 (2009)CrossRefGoogle Scholar
  11. 11.
    S.R. Oppenheimer, D.M. Mi, M.E. Sanders, R.M. Caprioli, J. Proteome Res. 9, 2182 (2010)CrossRefGoogle Scholar
  12. 12.
    S.H. Yuk, K.S. Oh, S.H. Cho, B.S. Lee, S.Y. Kim, B.K. Kwak, K. Kim, I.C. Kwon, Biomacromolecules 12, 2335 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Zong, J. Wu, C. Wang, H.X. Ju, F. Yan, Anal. Chem. 84, 2410 (2012)CrossRefGoogle Scholar
  14. 14.
    X.Q. Liu, R. Freeman, E. Golub, I. Willner, ACS Nano 5, 7648 (2011)CrossRefGoogle Scholar
  15. 15.
    W.W. Tu, W.J. Wang, J.P. Lei, S.Y. Deng, H.X. Ju, Chem. Commun. 48, 6535 (2012)Google Scholar
  16. 16.
    S.L. Zhao, J.W. Liu, Y. Huang, Y.M. Liu, Chem. Commun. 48, 699 (2012)Google Scholar
  17. 17.
    H.L. Qi, C. Ling, Q.Y. Ma, Q. Gao, C.X. Zhang, Analyst 137, 393 (2012)Google Scholar
  18. 18.
    S.G. Ge, L. Ge, M. Yan, X.R. Song, J.H. Yu, J.D. Huang, Chem. Commun. 48, 9397 (2012)Google Scholar
  19. 19.
    S.G. Ge, F. Yu, L. Ge, M. Yan, J.H. Yu, D.R. Chen, Analyst 137, 4727 (2012)CrossRefGoogle Scholar
  20. 20.
    D. J. Zang, L. Ge, M. Yan, X. R. Song, J. H. Yu, Chem. Commun. 48, 4683 (2012)Google Scholar
  21. 21.
    M. Yan, L. Ge, W.Q. Gao, J.H. Yu, X.R. Song, S.G. Ge, Z.Y. Jia, C.C. Chu, Adv. Funct. Mater. 22, 3899 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Ge, J.X. Yan, X.R. Song, M. Yan, S.G. Ge, J.H. Yu, Biomaterials 33, 1024 (2012)CrossRefGoogle Scholar
  23. 23.
    S. W. Wang, W. J. Dai, L. Ge, M. Yan, J. H. Yu, X. R. Song, S. G. Ge and J. D. Huang. Chem. Commun. 48, 9971 (2012)Google Scholar
  24. 24.
    C.G. Shi, X. Shan, Z.Q. Pan, J.J. Xu, C. Lu, N. Bao, H.Y. Gu, Anal. Chem. 84, 3033 (2012)CrossRefGoogle Scholar
  25. 25.
    H. Jiang, X.M. Wang, Anal. Chem. 84, 6986 (2012)CrossRefGoogle Scholar
  26. 26.
    D.P. Huang, Y.Y. Qi, X.T. Bai, L.J. Shi, H. Jia, D.J. Zhang, L.Q. Zheng, ACS Appl. Mater. Interfaces 4, 4665 (2012)CrossRefGoogle Scholar
  27. 27.
    X.T. Bai, L.Q. Zheng, Cryst. Growth Des. 10, 4701 (2010)CrossRefGoogle Scholar
  28. 28.
    D.P. Huang, X.T. Bai, L.Q. Zheng, J. Phys. Chem. C 115, 14641 (2011)CrossRefGoogle Scholar
  29. 29.
    M.A. Rahman, H.B. Noh, Y.B. Shim, Anal. Chem. 80, 8020 (2008)CrossRefGoogle Scholar
  30. 30.
    L.H. Zhang, B.F. Liu, S.J. Dong, J. Phys. Chem. B 111, 10448 (2007)CrossRefGoogle Scholar
  31. 31.
    M.J. Li, Z.F. Chen, V.W.W. Yam, Y.B. Zu, ACS Nano 2, 905 (2008)CrossRefGoogle Scholar
  32. 32.
    X.M. Zhou, D. Xing, D.B. Zhu, L. Jia, Anal. Chem. 81, 255 (2009)CrossRefGoogle Scholar
  33. 33.
    R.X. Duan, X.M. Zhou, D. Xing, Anal. Chem. 82, 3099 (2010)CrossRefGoogle Scholar
  34. 34.
    G.F. Jie, L. Wang, J.X. Yuan, S.S. Zhang, Anal. Chem. 83, 3873 (2011)CrossRefGoogle Scholar
  35. 35.
    K.L. Metera, K.D. Hänni, G.N. Zhou, M.K. Nayak, H.S. Bazzi, D. Juncker, H.F. Sleiman, ACS Macro. Lett. 1, 954 (2012)CrossRefGoogle Scholar
  36. 36.
    A. Dong, S. Lan, J.F. Huang, T. Wang, T.Y. Zhao, L.H. Xiao, W.W. Wang, X. Zheng, F.Q. Liu, G. Gao, Y.X. Chen, ACS Appl. Mater. Interfaces 3, 4228 (2011)CrossRefGoogle Scholar
  37. 37.
    M.F. Shao, F.Y. Ning, J.W. Zhao, M. Wei, D.G. Evans, X. Duan, J. Am. Chem. Soc. 134, 1071 (2012)CrossRefGoogle Scholar
  38. 38.
    Y.H. Won, H.S. Jang, S.M. Kim, E. Stach, M. Ganesana, S. Andreescu, L.A. Stanciu, Langmuir 26, 4320 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Su, M.H. Cao, L. Ren, C.W. Hu, J. Phys. Chem. C115, 14469 (2011)Google Scholar
  40. 40.
    Y.J. Song, K.G. Qu, C. Xu, J.S. Ren, X.G. Qu, Chem. Commun. 46, 6572 (2010)CrossRefGoogle Scholar
  41. 41.
    B.J. Jeong, R. Akter, O.H. Han, C.K. Rhee, M.A. Rahman, Anal. Chem. 85, 1784 (2013)CrossRefGoogle Scholar
  42. 42.
    M.A. Rahman, H.B. Noh, Y.B. Shim, Anal. Chem. 80, 8020 (2008)CrossRefGoogle Scholar
  43. 43.
    M.J. Ruedas-Rama, E.A.H. Hall, Anal. Chem. 80, 8260 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shenguang Ge
    • 1
  • Jinghua Yu
    • 2
  • Xiuling Jiao
    • 1
  • Dairong Chen
    • 1
  1. 1.School of Chemistry & Chemical Engineering, Technology Research Center for Colloidal MaterialsShandong UniversityJinanChina
  2. 2.Key Laboratory of Chemical Sensing & Analysis in Universities of ShandongUniversity of JinanJinanChina

Personalised recommendations