The Electrical Properties of Polyaniline (PANI)–Co0.5Mn0.5Fe2O4 Nanocomposite



Polyaniline (PANI)/cobalt-manganese ferrite, PANI/Co0.5Mn0.5Fe2O4, nanocomposite was synthesized by oxidative chemical polymerization of aniline in the presence of ammonium peroxydisulfate. Microwave assisted synthesis method was used for the fabrication of core Co0.5Mn0.5Fe2O4 nanoparticles. The presence of PANI on the surface of the Co0.5Mn0.5Fe2O4 NPs was confirmed by infrared spectroscopy and thermal gravimetric analysis. The crystallite size was calculated with line profile fitting method as 20 ± 9 nm. The spherical morphology of the product was presented by Scanning electron microscopy and transmission electron microscopy. The electrical characterizations showed that ac conductivity is found to be independent of frequency and increases with increase of temperatures. However, imaginary component of dielectric function obey the power law of frequency while it is almost independent of temperature. This can be attributed to the molecular interatomic interaction between Co0.5Mn0.5Fe2O4 nanoballs and PANI shells.


Dielectric properties Chemical synthesis Impedance spectroscopy Electrical properties 



This work is supported by Fatih University under BAP Grant No. P50021104-B.


  1. 1.
    L. Zhang, M. Wan, J. Phys. Chem. B 107, 6748 (2003).Google Scholar
  2. 2.
    N. Gospodinova, L. Terlemzyan, Prog. Polym. Sci. 23, 1443 (1998)CrossRefGoogle Scholar
  3. 3.
    W.S. Huang, B.D. Humphrey, A.G. MacDiarmid, J. Chem. Soc. Faraday Trans. 82, 2385 (1986)CrossRefGoogle Scholar
  4. 4.
    V. Erokhin, M.K. Ram, Ö. Yavuz, The Nanotechnology (Elsevier, London, 2008)Google Scholar
  5. 5.
    X. Huang, Z. Chen, Mater. Res. Bull. 40, 105 (2005)CrossRefGoogle Scholar
  6. 6.
    O. Yavuz, M.K. Ram, M. Aldissi, J. Mater. Chem. 15, 810 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Deng, C. He, Y. Peng, Synth. Met. 139, 295 (2003)CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, M. Wan, Y. Wei, Nanotechnology 16, 2827 (2005)CrossRefGoogle Scholar
  9. 9.
    C. Leng, J. Wei, Z. Liu, J. Shi, J. Alloys Compd. 509, 3052 (2011)CrossRefGoogle Scholar
  10. 10.
    C.S. Zhang, L. Yang, J. Magn. Magn. Mater. 324, 1469 (2012)CrossRefGoogle Scholar
  11. 11.
    S.H. Hosseini, S.H. Mohseni, A. Asadnia, H. Kerdari, J. Alloys Compd. 509, 4682 (2011)CrossRefGoogle Scholar
  12. 12.
    Z. Durmus, A. Baykal, H. Kavas, H. Sözeri, Phys. B 406, 114 (2011)Google Scholar
  13. 13.
    E.E. Tanrıverdi, A.T. Uzumcu, H. Kavas, A. Demir, A. Baykal, Nano-Micro Lett. 3, 99 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Kumar, V. Singh, S. Aggarwal, U.K. Mandal, R.K. Kotnala, Compos. Sci. Technol. 70, 249 (2010)CrossRefGoogle Scholar
  15. 15.
    H. Sozeri, U. Kurtan, R. Topkaya, A. Baykal, M.S. Toprak, Ceram. Int. 39, 5137 (2013)CrossRefGoogle Scholar
  16. 16.
    K. He, M. Li, L. Guo, Int. J. Hydrogen Energy 37, 755 (2012)CrossRefGoogle Scholar
  17. 17.
    T. Wejrzanowski, R. Pielaszek, A. Opalinska, H. Matysiak, W. Łojkowski, K.J. Kurzydłowski, Appl. Surf. Sci. 253, 204 (2006)Google Scholar
  18. 18.
    R. Pielaszek, Analytical expression for diffraction line profile for polydispersive powders (Applied Crystallography Proceedings of the XIX Conference, Krakow, 2003), p. 43Google Scholar
  19. 19.
    C.L. Yuan, Y.S. Hong, C.H. Lin, J. Magn. Magn. Mater. 323, 1851 (2011)CrossRefGoogle Scholar
  20. 20.
    R.T. Ma, H.T. Zhao, G. Zhang, Mater. Res. Bull. 45, 1064 (2010)CrossRefGoogle Scholar
  21. 21.
    G.D. Prasannaa, H.S. Jayanna, A.R. Lamani, S. Dash, Synth. Met. 161, 2306 (2011)CrossRefGoogle Scholar
  22. 22.
    B. Unal, A. Baykal, M. Senel, H. Sozeri, J Inorg. Organomet. Polym. Mater. 23, 489 (2013)CrossRefGoogle Scholar
  23. 23.
    H. Deligoz, A. Baykal, E.E. Tanrıverdi, Z. Durmus, M.S. Toprak, Mater. Res. Bull. 47, 537 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne, Macromolecules 36, 5187 (2003)CrossRefGoogle Scholar
  25. 25.
    E. Laredo, M. Grimau, A. Bello, D.F. Wu, Y.S. Zhang, D.P. Lin, Biomacromolecules 11, 1339 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Panteny, R. Stevens, C.R. Bowen, Ferroelectrics 319, 199 (2005)CrossRefGoogle Scholar
  27. 27.
    A.K. Jonscher, Nature (Lond.) 267, 673 (1977)CrossRefGoogle Scholar
  28. 28.
    J.C. Dyre, T.B. Schroder, Rev. Mod. Phys. 72, 873 (2000)CrossRefGoogle Scholar
  29. 29.
    B. Unal, M. Senel, A. Baykal, H. Sözeri, Synthesis and characterization of multiwall-carbon nanotubes/cobalt ferrite hybrids. Curr. Appl. Phys. (2013). doi: 10.1016/j.cap.2013.04.020 Google Scholar
  30. 30.
    H.Z. Ai, Z.H. Xiao, K. Chao, Y.Y. Ying, S.X. Li, R.L. Jun, W.Y. Peng, J. Mater. Sci.: Mater. Electron. 17, 859 (2006)Google Scholar
  31. 31.
    A.C.V. de Araújo, R.J. de Oliveira, S. Alves Júnior, A.R. Rodrigues, F.L.A. Machado, F.A.O. Cabral, W.M. de Azevedo, Synth. Met. 160, 685 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryFatih UniversityB.Çekmece-IstanbulTurkey
  2. 2.National Center of Excellence in Analytical ChemistryUniversity of SindhJamshoroPakistan
  3. 3.Department of Electrical and Electronic Engineering, R&D CenterFatih UniversityB.Çekmece-IstanbulTurkey
  4. 4.BioNanoTechnology R&D CenterFatih UniversityB.Çekmece-IstanbulTurkey

Personalised recommendations