Self-Assembled Organic–Inorganic Hybrid Nanocomposite of a Porphyrin Derivative and CdS

  • Peihua Zhu
  • Lingling Kan
  • Xingkui Guo
  • Xuewei Chen
  • Mingliang Ren
  • Yanli Chen
  • Xiaomei Zhang


A porphyrin derivative, 5-(4-carboxylphenyl)-10,15,20-tris(4-chlorophenyl) porphyrin (PorCOOH), was synthesized and self-assembled as a monolayer thin solid film on the modified surface of a quartz substrate by an ester bond between –COOH groups of PorCOOH molecules and –OH groups of the hydrophilic pretreated SiO2 surface. An analysis of the spectral change revealed the J-aggregate nature of PorCOOH molecules in the obtained thin solid film. With this thin solid film of PorCOOH as a template, CdS nanoparticles were deposited on it in situ, which were further characterized by electronic absorption, fluorescence, and energy-dispersive X-ray spectroscopy. The morphology of CdS nanoparticles is disklike, and the diameter is ca. 40–60 nm, determined by scanning electronic microscopy. Furthermore, electron transfer between the organic layer and CdS nanoparticles was deduced through fluorescence quenching and theoretical analysis.


Porphyrin CdS Self-assembly Organic–inorganic hybrid 



Financial support from the Natural Science Foundation of China (Grant No. 21201079), the Education Department of Shandong province (Grant No. J12LD08), and the University of Jinan is gratefully acknowledged.


  1. 1.
    W. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar, B. Sahraoui, Adv. Mater. 20, 1013 (2008)CrossRefGoogle Scholar
  2. 2.
    A. Kira, T. Umeyama, Y. Matano, K. Yoshida, S. Isoda, M. Isosomppi, N.V. Tkachenko, H. Lemmetyinen, H. Imahori, Langmuir 22, 5497 (2006)CrossRefGoogle Scholar
  3. 3.
    C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Science 286, 945 (1999)CrossRefGoogle Scholar
  4. 4.
    A. Nishimura, N. Sagawa, T.J. Uchino, Phys. Chem. C 113, 4260 (2009)CrossRefGoogle Scholar
  5. 5.
    L. Hu, Y.-L. Zhao, K. Ryu, C. Zhou, J.F. Stoddart, G. Grcuner, Adv. Mater. 20, 939 (2008)CrossRefGoogle Scholar
  6. 6.
    E. Hao, L. Wang, J. Zhang, B. Yang, X. Zhang, J. Shen, Chem. Lett. 1, 5 (1999)CrossRefGoogle Scholar
  7. 7.
    L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, Angew. Chem. Int. Ed. 44, 78 (2005)CrossRefGoogle Scholar
  8. 8.
    N.A. Kotov, I. Dekany, J.H. Fendler, J. Phys. Chem. 99, 13065 (1995)CrossRefGoogle Scholar
  9. 9.
    K. Tadanaga, J. Morinaga, A. Matsuda, T. Minami, Chem. Mater. 12, 590 (2000)CrossRefGoogle Scholar
  10. 10.
    J.F. Liu, K.Z. Yang, Z.H. Lu, J. Am. Chem. Soc. 119, 11061 (1997)CrossRefGoogle Scholar
  11. 11.
    T. Cassagneau, J.H. Fendler, T.E. Mallouk, Langmuir 16, 241 (2000)CrossRefGoogle Scholar
  12. 12.
    E.-H. Kang, P. Jin, Y. Yang, J. Sun, J. Shen, Chem. Commun. 41, 4332 (2006)CrossRefGoogle Scholar
  13. 13.
    H. Tachibana, Y. Yamanaka, H. Sakai, M. Abe, M. Matsumoto, Chem. Mater. 12, 854 (2000)CrossRefGoogle Scholar
  14. 14.
    J.A.A. Elemans, W.R. Hameren, R.J.M. Nolte, A.E. Rowan, Adv. Mater. 18, 1251 (2006)CrossRefGoogle Scholar
  15. 15.
    G. Lu, Y. Chen, Y. Zhang, M. Bao, Y. Bian, X. Li, J. Jiang, J. Am. Chem. Soc. 130, 11623 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Cui, H. Liu, L. Gan, Y. Li, D. Zhu, Adv. Mater. 20, 2918 (2008)CrossRefGoogle Scholar
  17. 17.
    C. Huang, Y. Li, Y. Song, Y. Li, H. Liu, D. Zhu, Adv. Mater. 22, 3532 (2010)CrossRefGoogle Scholar
  18. 18.
    T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Yoshi-shige Okuno, T. Mashiko, Nature 413, 619 (2001)CrossRefGoogle Scholar
  19. 19.
    Y. Gao, X. Zhang, C. Ma, X. Li, J. Jiang, J. Am. Chem. Soc. 130, 17044 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Gao, Y. Chen, R. Li, Y. Bian, X. Li, J. Jiang, Chem. Eur. J. 15, 13241 (2009)CrossRefGoogle Scholar
  21. 21.
    G. Lu, Y. Chen, Y. Zhang, M. Bao, Y. Bian, X. Li, J. Jiang, J. Am. Chem. Soc. 130, 11623 (2008)CrossRefGoogle Scholar
  22. 22.
    G. Lu, X. Zhang, X. Cai, J. Jiang, Eur. J. Inorg. Chem. 10, 753 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Bhyrappa, C. Arunkumar, J.J. Vittal, J. Chem. Sci. 117, 139 (2005)Google Scholar
  24. 24.
    M. Kasha, H.R. Rawls, M.A. El-bayoumi, Pure Appl. Chem. 11, 371 (1965)CrossRefGoogle Scholar
  25. 25.
    V. Czikklely, H.D. Forsterling, H. Kuhn, Chem. Phys. Lett. 6, 207 (1970)CrossRefGoogle Scholar
  26. 26.
    N. Nagata, S. Kugimiya, Y. Kobuke, Chem. Commun. 28, 1389–1390 (2000)CrossRefGoogle Scholar
  27. 27.
    I.K. Iverson, S.M. Casey, W. Seo, S.-W. Tam-Chang, B.A. Pindzola, Langmuir 18, 3510 (2002)CrossRefGoogle Scholar
  28. 28.
    Y. Kobuke, H. Miyaji, J. Am. Chem. Soc. 116, 4111 (1994)CrossRefGoogle Scholar
  29. 29.
    R. Schroeder, B. Ullrich, Appl. Phys. Lett. 81, 556 (2002)CrossRefGoogle Scholar
  30. 30.
    A. Boulesbaa, A. Issac, D. Stockwell, Z. Huang, J. Huang, J. Guo, T. Lian, J. Am. Chem. Soc. 129, 15132 (2007)CrossRefGoogle Scholar
  31. 31.
    S. Vajiravelu, L. Ramunas, G.J. Vidas, G. Valentas, J. Vygintas, S. Valiyaveettil, J. Mater. Chem. 19, 4268 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Hasselbarth, A. Eychmiiller, H. Weller, Chem. Phys. Lett. 203, 271 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Peihua Zhu
    • 1
  • Lingling Kan
    • 1
  • Xingkui Guo
    • 1
  • Xuewei Chen
    • 1
  • Mingliang Ren
    • 1
  • Yanli Chen
    • 1
  • Xiaomei Zhang
    • 1
  1. 1.Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of JinanJinanChina

Personalised recommendations