Advertisement

Photoluminescence Properties of a New Homochiral srs-Type Coordination Polymer Employing Dinuclear [Zn2(COO)3] Units as Building Blocks

  • Xin-hua Lou
  • Hong-mei Li
  • Zhi-jie Zhang
  • Hao Zhang
  • Chen Xu
Communication

Abstract

Qe report a new compound, namely [Zn2(BTC)(NO3)(DMA)3]n, with 1,3,5-benzenetricarboxylic acid (H3BTC) and N,N′-dimethylacetamide (DMA) by the solvothermal method. The compound is characterized by elemental analysis, thermal analysis and X-ray diffraction (XRD). Single crystal XRD analysis reveals that the compound is an extended three-dimensional framework containing dinuclear [Zn2(COO)3] units as building blocks and can be simplified into a 3-connected srs topological network. There are two kinds of graceful helical chains with opposite chirality. The compound exhibits strong photoluminescent properties at room temperature.

Keywords

Solvothermal synthesis Zinc Building block Topology Photoluminescence 1,3,5-Benzenetricarboxylic acid N,N′-dimethylacetamide 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21272110 and 20902043).

References

  1. 1.
    O.M. Yaghi, H. Li, C. Davis, D. Richardson, T.L. Groy, Acc. Chem. Res. 31, 474 (1998)CrossRefGoogle Scholar
  2. 2.
    A.M. Seayad, D.M. Antonelli, Adv. Mater. 16, 765 (2004)CrossRefGoogle Scholar
  3. 3.
    O.R. Evans, W.B. Lin, Acc. Chem. Res. 35, 511 (2002)CrossRefGoogle Scholar
  4. 4.
    P.X. Yin, J. Zhang, Y.Y. Qin, Z.J. Li, Y.G. Yao, CrystEngComm. 13, 23536 (2011)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, Y.Y. Huang, Q.P. Lin, J. Zhang, Y.G. Yao, Dalton Trans. 42, 4294 (2013)Google Scholar
  6. 6.
    A.K. Cheethan, C.N.R. Rao, R.K. Feller, Chem. Commun. 14, 4780 (2006)CrossRefGoogle Scholar
  7. 7.
    H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276 (1999)CrossRefGoogle Scholar
  8. 8.
    O.M. Yaghi, C.E. Davis, G. Li, H. Li, J. Am. Chem. Soc. 119, 2861 (1997)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, Y.Y. Huang, M.J. Zhang, J. Zhang, Y.G. Yao, Cryst. Growth Des. 12, 3231 (2012)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, Y.Y. Huang, J.K. Cheng, Y.G. Yao, J. Zhang, F. Wang, CrystEngComm. 14, 4843 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Acc. Chem. Res. 34, 319 (2001)CrossRefGoogle Scholar
  12. 12.
    G.M. Sheldrick, SHELXS 97, Program for Solution of Crystal Structures (University of Göttingen, Göttingen, 1997)Google Scholar
  13. 13.
    C.S. Xavier, J.C. Sczancosk, L.S. Cavalcante, C.O. Paiva-Santos, J.A. Varela, E. Longo, M. Siu Li, Solid State Sci. 11, 2173 (2009)CrossRefGoogle Scholar
  14. 14.
    L.S. Cavalcante, J.C. Sczancosk, M. Siu Li, E. Longo, J.A. Varela, Colloids Surf A 396, 346 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Vagin, A.K. Ott, B. Rieger, Chem. Ing. Tech. 79, 767 (2007)CrossRefGoogle Scholar
  16. 16.
    W. Marjit Singh, R. Jali, B. Das, J.B. Baruah, Inorg. Chim. Acta 37, 372 (2011)Google Scholar
  17. 17.
    X.Y. Cao, J. Zhang, Z.J. Li, J.K. Cheng, Y.G. Yao, CrystEngComm. 9, 806 (2007)CrossRefGoogle Scholar
  18. 18.
    W. Chen, J.Y. Wang, C. Chen, Q. Yue, H.M. Yuan, J.S. Chen, S.N. Wang, Inorg. Chem. 42, 944 (2003)CrossRefGoogle Scholar
  19. 19.
    J.G. Lin, S.Q. Zang, Z.F. Tian, Y.Z. Li, Y.Y. Xu, H.Z. Zhu, Q.J. Meng, CrystEngComm. 9, 915 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Luoyang Normal UniversityLuoyangPeople’s Republic of China

Personalised recommendations