Advertisement

Crystal Structure and Physicochemical Properties of a New 4,4′-Diammoniumdiphenylether Triphosphate [C12H14N2O]2HP3O10 ·2H2O

  • Saloua Belghith
  • Latifa Ben Hamada
  • Amor Jouini
Communication
  • 124 Downloads

Abstract

Crystals of 4,4′-diammoniumdiphenylether triphosphate, [C12H14N2O]2HP3O10·2H2O (1), were prepared and grown at room temperature. Species 1 crystallizes in the triclinic system with centric space group \( P\overline{1} \). Its unit cell dimensions are a = 10.487(2), b = 10.766(2), c = 15.553(2) Å, α = 98.53(1)°, β = 107.55(1)°, γ = 103.31(2), with V = 1588.8(5) Å3 and Z = 2. The structure was determined by X-ray data collection on a single-crystal and gives a clear description of hydrogen bonds interconnecting the triphosphoric groups so as to build [(HP3O10)2(H2O)]8− infinite inorganic chains that extend along the [110] direction. Organic cations, spreading along the [101] direction establish hydrogen bonding connections between the inorganic chains. The IR spectrum for the crystal confirms that most of the vibrational modes are comparable to similar triphosphates. The thermal properties reveal that the compound is stable to 90 °C.

Keywords

Crystal structure Thermal behavior Infrared spectroscopy 4,4′-Diammoniumdiphenylether triphosphate 

References

  1. 1.
    W. Smirani, C. Ben Nasr, M. Rzaigui, Phosphorus Sulfur Silicon 179, 2195 (2004)CrossRefGoogle Scholar
  2. 2.
    W. Smirani, M. Rzaigui, Z. Kristallorg, NCS 220, 250 (2005)Google Scholar
  3. 3.
    W. Smirani, M. Rzaigui, Phosphorus Sulfur Silicon 182, 2195 (2007)CrossRefGoogle Scholar
  4. 4.
    W. Smirani, M. Rzaigui, Anal. Sci. 21, 109 (2005)Google Scholar
  5. 5.
    R.C. Finn, J. Zubieta, R.C. Hanshalter, Prog. Inorg. Chem. 51, 451 (2002)Google Scholar
  6. 6.
    B. Koo, W. Ollette, E.M. Burkholder, V. Golub, C.J. O’connor, J. Zubieta, J. Solid State Sci. 6, 461 (2004)CrossRefGoogle Scholar
  7. 7.
    F. Neve, A. Crispini, O. Frances Cangelie, Inorg. Chem. 39, 1187 (2000)CrossRefGoogle Scholar
  8. 8.
    G.W. Morey, E. Ingerson, Am. J. Sci. 1, 242 (1944)Google Scholar
  9. 9.
    G.M. Sheldrick, Acta Cryst. A64, 112 (2008)Google Scholar
  10. 10.
    D.E.C. Corbridge, Acta. Cryst. 13, 263 (1960)CrossRefGoogle Scholar
  11. 11.
    D.K. Davies, D.E.C. Corbridge, Acta. Cryst. 11, 315 (1958)CrossRefGoogle Scholar
  12. 12.
    E.A. Prodan, B.M. Galogadja, P.N. Petruskaia, B.H. Kordjev, Dokl. Akad. Nauk SSSR 25, 163 (1981)Google Scholar
  13. 13.
    M.T. Averbuch-Pouchot, A. Durif, J. Coing-Boyat, J.C. Guitel, Acta Cryst. B33, 203 (1977)Google Scholar
  14. 14.
    V.V. Krasnikov, Z.A. Konstant, V.S. Fundamenskii, Izv. Akad. Nauk SSSR. Neorg. Mater. 19, 1373 (1983)Google Scholar
  15. 15.
    R.W. Mooney, S.Z. Toma, J. Brunvoll, Spectrochim. Acta A2, 1541 (1967)Google Scholar
  16. 16.
    B.C. Cornilson, J. Mol. Struct. 117, 1 (1984)CrossRefGoogle Scholar
  17. 17.
    R.M. Silverstein, G.C. Basler, T.C. Morill, Spectrometric Identification of Organic Compounds 3rd ed (Wiley, New York, 1974)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Saloua Belghith
    • 1
  • Latifa Ben Hamada
    • 1
  • Amor Jouini
    • 1
  1. 1.Laboratoire de Chimie du Solide, Département de chimieFaculté des Sciences de Monastir, Université du centreMonastirTunisia

Personalised recommendations