Advertisement

Synthesis and Characterization of Silver Selenide Nanoparticles via a Facile Sonochemical Route Starting from a Novel Inorganic Precursor

  • Maryam Jafari
  • Masoud Salavati-Niasari
  • Fatemeh Mohandes
Article

Abstract

Silver selenide nanoparticles were synthesized by the reaction between silver benzoate and SeCl4 via a sonochemical method. The as-synthesized Ag2Se nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra and energy-dispersive X-ray microanalysis. Facile preparation and separation were important features of this route. To the best of our knowledge, it is the first time that silver benzoate was used as silver precursor for the synthesis of silver selenide nanoparticles.

Keywords

Silver selenide Silver benzoate Ultrasound irradiation Nanoparticle 

Notes

Acknowledgments

Authors are grateful to the council of Iran National Science Foundation and University of Kashan for supporting this work by Grant No. 159271/38.

References

  1. 1.
    H. Yu, J.B. Li, R.A. Loomis, L.W. Wang, W.E. Buhro, Nat. Mater. 2, 517 (2003)CrossRefGoogle Scholar
  2. 2.
    D. Schoen, C. Xie, Y. Cui, J. Am. Chem. Soc. 129, 4116 (2007)CrossRefGoogle Scholar
  3. 3.
    P. Boolchand, W. Bresser, J. Nature 410, 1070 (2001)CrossRefGoogle Scholar
  4. 4.
    H. Cao, Y. Xiao, Y. Lu, J. Yin, B. Li, S. Wu, X. Wu, Nano Res. 3, 863 (2010)CrossRefGoogle Scholar
  5. 5.
    S.T. Lakshmikvmar, Sol. Energy Mater. Sol. Cells 32, 7 (1994)CrossRefGoogle Scholar
  6. 6.
    K.L. Lewis, A.M. Pitt, P. Wyatt-Davies, J.R. Milward, Mater. Res. Soc. Symp. Proc. 374, 105 (1994)CrossRefGoogle Scholar
  7. 7.
    T. Akoto, H. Hasuda, M. Ashizawa, T. Hori, Jpn. Kokai Tokyo Kaho 171, 681 (1992)Google Scholar
  8. 8.
    R. Harpeness, O. Palchik, A. Gedanken, V. Palchik, S. Ameil, M.A. Slifkin, A.M. Weiss, J. Chem. Mater. 14, 2094 (2002)CrossRefGoogle Scholar
  9. 9.
    D. Grientschnig, W. Sitte, J. Phys. Chem. Solids 52, 805 (1991)CrossRefGoogle Scholar
  10. 10.
    R. Daleven, R. Gill, J. Appl. Phys. 38, 753 (1967)CrossRefGoogle Scholar
  11. 11.
    B. Gates, Y. Wu, Y. Yin, P. Yang, Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)CrossRefGoogle Scholar
  12. 12.
    J. Janek, B. Mogwitz, G. Beck, M. Kreutzbruck, L. Kienle, C. Korte, Prog. Solid State Chem. 32, 179 (2004)CrossRefGoogle Scholar
  13. 13.
    M. Kobayashi, Solid State Ionics 39, 121 (1990)CrossRefGoogle Scholar
  14. 14.
    M.C. Santhosh Kumar, B. Pradeep, Semicond. Sci. Technol. 17, 261 (2002)CrossRefGoogle Scholar
  15. 15.
    H. Su, Y. Xie, B. Li, Y. Qian, Mater. Res. Bull. 35, 465 (2000)CrossRefGoogle Scholar
  16. 16.
    S.-Y. Zhang, C.-X. Fang, Wei, B.-K. Jin, Y.-P. Tian, Y.-H. Shen, J.-X. Yang, H.-W. Gao, J. Phys. Chem. C 111, 4168 (2007)CrossRefGoogle Scholar
  17. 17.
    K. Nielsch, F. Muller, A. Li, U. Gosele, Adv. Mater. 12, 8 (2000)CrossRefGoogle Scholar
  18. 18.
    R. Coustal, J. Chim. Phys. 38, 277 (1958)Google Scholar
  19. 19.
    A. Sahu, L. Qi, M.S. Kang, D. Deng, D.J. Norris, J. Am. Chem. Soc. 1339, 6509 (2011)CrossRefGoogle Scholar
  20. 20.
    R. Blachnik, M. Lasocka, U. Walberecht, J. Solid State Chem. 431, 48 (1983)Google Scholar
  21. 21.
    S. Manoharan, S. Prasanna, D. Kiwitz, C. Schneider, Phys. Rev. 63, 2124051 (2001)Google Scholar
  22. 22.
    S. Stuczynski, J. Brennan, M. Steigerwald, J. Inorg. Chem. 28, 4431 (1989)CrossRefGoogle Scholar
  23. 23.
    J. Cheon, J.I. Zink, J. Am. Chem. Soc. 119, 3838 (1997)CrossRefGoogle Scholar
  24. 24.
    H.C. Metcalf, J.E. Williams, J.F. Caskta, Modern Chemistry (Holt Reinhart Winston, New York, 1982)Google Scholar
  25. 25.
    K.S. Suslick, D.A. Hammerton, R.E. Cline, J. Am. Chem. Soc. 108, 5641 (1986)CrossRefGoogle Scholar
  26. 26.
    K.S. Suslick, Science 247, 1439 (1990)CrossRefGoogle Scholar
  27. 27.
    S.J. Doktycz, K. Suslick, Science 247, 1067 (1990)CrossRefGoogle Scholar
  28. 28.
    K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinsta, Nature 353, 414 (1991)CrossRefGoogle Scholar
  29. 29.
    K. Chatakondu, M.L.H. Green, M. Thhompdon, K.S. Suslick, J. Chem. Soc. Chem. Commun. 9, 900 (1987)CrossRefGoogle Scholar
  30. 30.
    K.S. Suslick, T. Hyeon, M. Fang, J.T. Ries, A.A. Cichowlas, Mater. Sci. Forum 225, 903 (1996)CrossRefGoogle Scholar
  31. 31.
    M. Salavati-Niasari, J. Javidi, F. Davar, Ultrason. Sonochem. 17, 870 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509, 134 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509, 4098 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Ultrason. Sonochem. 19, 1079 (2012)CrossRefGoogle Scholar
  35. 35.
    F. Mohandes, M. Salavati-Niasari, Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.05.002
  36. 36.
    T.J. Mason, J.P. Lorimer, D.M. Bates, Ultrasonics 30, 40 (1992)CrossRefGoogle Scholar
  37. 37.
    B.T. Usubalive, E.M. Movasumov, I.R. Amiraslanov, A.I. Akhmedov, A.A. Musaev, K.S. Mamedov, Translated from Zhurnal Strukturnoi Khimii 22, 98 (1981)Google Scholar
  38. 38.
    H. Emadi, M. Salavati-Niasari, F. Davar, Micro. Nano Lett. 6, 909 (2011)Google Scholar
  39. 39.
    V.-S. Manoiu, A. Aloman, U.P.B. Sci, Bull. 72, 1454 (2010)Google Scholar
  40. 40.
    K.S. Suslik (ed.), Ultrasound: Its Chemical, Physical and Biological Effects (VCH, Weinheim, 1988)Google Scholar
  41. 41.
    B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004)CrossRefGoogle Scholar
  42. 42.
    K.S. Suslick, J.J. Gawienowski, P.F. Schubert, H.H. Wang, Ultrasonics 22, 33 (1984)CrossRefGoogle Scholar
  43. 43.
    M. Salavati-Niasari, F. Mohandes, F. Davar, K. Saberyan, Appl. Surf. Sci. 256, 1476 (2009)CrossRefGoogle Scholar
  44. 44.
    F. Mohandes, F. Davar, M. Salavati-Niasari, J. Magn. Magn. Mater. 322, 872 (2010)CrossRefGoogle Scholar
  45. 45.
    F. Mohandes, F. Davar, M. Salavati-Niasari, K. Saberyan, Current Nanosci. 7, 260 (2011)CrossRefGoogle Scholar
  46. 46.
    F. Mohandes, F. Davar, M. Salavati-Niasari, J. Phys. Chem. Solids 71, 1623 (2010)CrossRefGoogle Scholar
  47. 47.
    M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, N. Yavarinia, Inorg. Chimi. Acta 362, 3691 (2009)CrossRefGoogle Scholar
  48. 48.
    M. Salavati-Niasari, F. Mohandes, F. Davar, Polyhedron 28, 2263 (2009)CrossRefGoogle Scholar
  49. 49.
    S.M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, K. Venkateswara-Rao, Mater. Res. Bulletin 47, 3148 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Maryam Jafari
    • 1
  • Masoud Salavati-Niasari
    • 1
    • 2
  • Fatemeh Mohandes
    • 1
  1. 1.Department of Inorganic ChemistryFaculty of Chemistry, University of KashanKashanIslamic Republic of Iran
  2. 2.Institute of Nano Science and Nano Technology, University of KashanKashanIslamic Republic of Iran

Personalised recommendations