Advertisement

Metallopolymer Films Exhibiting Three-Color Electrochromism in the UV/Vis and Near-IR Region: Remarkable Utility of Trimetallic Clusters Bearing Thienyl Pendants and Their Mixed-Valent Charge Transfer Transitions

  • Rumiko Matsuse
  • Masaaki Abe
  • Yuki Tomiyasu
  • Atsushi Inatomi
  • Hiroaki Yonemura
  • Sunao Yamada
  • Yoshio Hisaeda
Article

Abstract

Novel oxo-centered, acetate-bridged trinuclear ruthenium clusters functionalized with two pyridine ligands with thienyl substituents, [Ru3O(CH3COO)6(CO)(L1)2] (1) and [Ru3O(CH3COO)6(CO)(L2)2] (2), where L1 = 4-(2-thienyl)pyridine and L2 = 4-(2,2′-bithienyl)pyridine, have been synthesized and characterized. The molecular structure of 2 has been determined by single-crystal X-ray diffraction. One-electron oxidation of 2 with silver(I) cation has led to the isolation of a CO-dissociated product, [Ru3O(CH3COO)6(H2O)(L2)2]PF6 (3·PF 6 ), and subsequent reaction with 4-dimethylaminopyridine (dmap) gave [Ru3O(CH3COO)6(dmap)(L2)2]PF6 (4·PF 6 ). Linear metallopolymers containing the {Ru3O(CH3COO)6} groups have been deposited onto indium-tin oxide surface via oxidative electropolymerization of 2, 3·PF 6 , and 4·PF 6 . These metallopolymer thin films exhibit three-color electrochromism in the UV/Vis and near-IR region associated with the Ru3 II,III,III, Ru3 III,III,III, and Ru3 III,III,IV oxidation states.

Keywords

Ruthenium Cluster Electropolymerization Electrochromism Near-IR 

Notes

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research on Innovative Areas “Coordination Programming” (No. 22108523) and “Molecular Activation” (No. 23105537), Grants-in-Aid for Scientific Research (A) (No. 21245016) and (B) (No. 20350029), Grant-in-Aid for Challenging Exploratory Research (No. 24655134), the Global COE Program “Science for Future Molecular Systems” from MEXT, and a grant from Kuraray Co., Ltd.–Kyushu University collaborative research. The NMR spectrometer and X-ray diffractometer used in this work are equipped in Center of Advanced Instrumental Analysis, Kyushu University. We also acknowledge Ms. Sakiko Taura (Kyushu University) for her assistance in obtaining AFM images.

References

  1. 1.
    C.G. Granqvist, Solid State Ionics 53–56, 479–489 (1992)CrossRefGoogle Scholar
  2. 2.
    G.A. Niklasson, C.G. Granqvist, J. Mater. Chem. 17, 127–156 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Higuchi, D.G. Kurth, Chem. Record 7, 203–209 (2007)CrossRefGoogle Scholar
  4. 4.
    D.T. McQuade, A.E. Pullen, T.M. Swager, Chem. Rev. 100, 2537–2574 (2000)CrossRefGoogle Scholar
  5. 5.
    C.S. Grange, A.J.H.M. Meijer, M.D. Ward, Dalton Trans. 39, 200–211 (2010)CrossRefGoogle Scholar
  6. 6.
    M.D. Ward, J.A. McCleverty, J. Chem. Soc., Dalton Trans. 275–288 (2002)Google Scholar
  7. 7.
    L. Motiei, M. Lahav, D. Freeman, M.E. van der Boom, J. Am. Chem. Soc. 131, 3468–3469 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Bernhard, J.I. Goldsmith, K. Takada, H.D. Abruña, Inorg. Chem. 42, 4389–4393 (2003)CrossRefGoogle Scholar
  9. 9.
    J. García-Cañadas, A.P. Meacham, L.M. Peter, M.D. Ward, Angew. Chem. Int. Ed. 42, 3011–3014 (2003)CrossRefGoogle Scholar
  10. 10.
    C.S. Grange, A.J.H.M. Meijer, M.D. Ward, Dalton Trans. 39, 200–211 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Qi, Z.Y. Wang, Macromolecules 36, 3146–3151 (2003)CrossRefGoogle Scholar
  12. 12.
    S. Wang, X. Li, S. Xun, X. Wan, Z.Y. Wang, Macromolecules 39, 7502–7507 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Biancardo, P.F.H. Schwab, R. Argazzi, C.A. Bignozzi, Inorg. Chem. 42, 3966–3968 (2003)CrossRefGoogle Scholar
  14. 14.
    P.F.H. Schwab, S. Diegoli, M. Biancardo, C.A. Bignozzi, Inorg. Chem. 42, 6613–6615 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Wang, E.K. Todd, M. Birau, J. Zhang, X. Wan, Z.Y. Wang, Chem. Mater. 17, 6388–6394 (2005)CrossRefGoogle Scholar
  16. 16.
    H.-J. Yen, H.Y. Lin, G.-S. Liou, Chem. Mater. 23, 1874–1882 (2011)CrossRefGoogle Scholar
  17. 17.
    D.A. Jose, A.D. Shukla, D.K. Kumar, B. Ganguly, A. Das, G. Ramakrishna, D.K. Palit, H.N. Ghosh, Inorg. Chem. 44, 2414–2425 (2005)CrossRefGoogle Scholar
  18. 18.
    J. García-Cañadas, A.P. Meacham, L.M. Peter, M.D. Ward, Angew. Chem. Int. Ed. 42, 3011–3014 (2003)CrossRefGoogle Scholar
  19. 19.
    R.D. Cannon, R.P. White, Prog. Inorg. Chem. 36, 195–298 (1988)CrossRefGoogle Scholar
  20. 20.
    Y. Sasaki, M. Abe, Chem. Record 4, 279–290 (2004)CrossRefGoogle Scholar
  21. 21.
    B.K. Breedlove, T. Yamaguchi, T. Ito, C.H. Londergan, C.P. Kubiak, in “Comprehensive Coordination Chemistry II: from Biology to Nanotechnology”, ed. by J.A. McCleverty, T.J. Meyer, vol. 2 (Elsevier, Oxford 2004), p. 717Google Scholar
  22. 22.
    H.E. Toma, K. Araki, Coord. Chem. Rev. 196, 307–329 (2000)CrossRefGoogle Scholar
  23. 23.
    H.E. Toma, K. Araki, A.D.P. Alexiou, S. Nikolaou, S. Dovidauskas, Coord. Chem. Rev. 219–221, 187–234 (2001)CrossRefGoogle Scholar
  24. 24.
    D. Akashi, H. Kido, Y. Sasaki, T. Ito, Chem. Lett. 65, 143–146 (1992)CrossRefGoogle Scholar
  25. 25.
    H.E. Toma, Current Sci. 95, 1202–1225 (2008)Google Scholar
  26. 26.
    M. Abe, T. Michi, A. Sato, T. Kondo, W. Zhou, S. Ye, K. Uosaki, Y. Sasaki, Angew. Chem. Int. Ed. 42, 2912–2915 (2003)CrossRefGoogle Scholar
  27. 27.
    S.H. Toma, H.E. Toma, Electrochem. Commun. 8, 1628–1632 (2006)CrossRefGoogle Scholar
  28. 28.
    Y. Tomiyasu, M. Abe, Y. Morihara, H. Ohgi, T. Otake, Y. Hisaeda, Chem. Lett. 38, 492–493 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Voituriez, M. Mellah, E. Schulz, Synth. Met. 156, 166–175 (2006)CrossRefGoogle Scholar
  30. 30.
    B. Fabre, E. Hao, Z.M. LeJeune, E.K. Amuhaya, F. Barriere, J.C. Garno, M.G.H. Vicente, Appl. Mater. & Interfaces 2, 691–702 (2010)CrossRefGoogle Scholar
  31. 31.
    A.M. Kuchison, M.O. Wolf, B.O. Patrick, Inorg. Chem. 49, 8802–8812 (2010)CrossRefGoogle Scholar
  32. 32.
    X.J. Zhu, B.J. Holliday, Macromol. Rapid Commun. 31, 904–909 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Huang, L. Wang, H. Tanaka, T. Ogawa, Eur. J. Inorg. Chem. 1321–1330 (2009)Google Scholar
  34. 34.
    J. Kim, D.M. Kang, S.C. Shin, M.Y. Choi, J. Kim, S.S. Lee, J.S. Kim, Anal. Chim. Acta 614, 85–92 (2008)CrossRefGoogle Scholar
  35. 35.
    V.G. Albano, M. Bandini, C. Moorlag, F. Piccinelli, A. Pietrangelo, S. Tommasi, A. Umani-Ronchi, M.O. Wolf, Organometallics 26, 4373–4375 (2007)CrossRefGoogle Scholar
  36. 36.
    J.L. Reddinger, J.R. Reynolds, Chem. Mater. 10, 1236–1243 (1998)CrossRefGoogle Scholar
  37. 37.
    M. Mellah, B. Ansel, F. Patureau, A. Voituriez, E. Schulz, J. Mol. Catal. A 272, 20–25 (2007)CrossRefGoogle Scholar
  38. 38.
    C.-J. Yao, Y.-W. Zhong, H.-J. Nie, H.D. Abruña, J. Yao, J. Am. Chem. Soc. 133, 20720–20723 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Chem. Rev. 110, 4724–4771 (2010)CrossRefGoogle Scholar
  40. 40.
    J.R. Farrell, D.P. Lavoie, R.T. Pennell, A. Cetin, J.L. Shaw, C.J. Ziegler, Inorg. Chem. 46, 6840–6842 (2007)CrossRefGoogle Scholar
  41. 41.
    W.M. Albers, G.W. Canters, J. Reedijk, Tetrahedron 51, 3895–3904 (1995)CrossRefGoogle Scholar
  42. 42.
    K.S. Larbi, S. Djebbar, H. Doucet, Eur. J. Inorg. Chem. 23, 3493–3502 (2011)CrossRefGoogle Scholar
  43. 43.
    M. Abe, T. Kondo, K. Uosaki, Y. Sasaki, J. Electroanal. Chem. 473, 93–98 (1999)CrossRefGoogle Scholar
  44. 44.
    G.M. Sheldrick, SADABS (University of Goettingen, Goettingen, 1996)Google Scholar
  45. 45.
    G.M. Sheldrick, SHELXL97 and SHELXS97 (University of Goettingen, Goettingen, 1997)Google Scholar
  46. 46.
    J.A. Baumann, D.J. Salmon, S.T. Wilson, T.J. Meyer, W.E. Hatfield, Inorg. Chem. 17, 3342–3350 (1978)CrossRefGoogle Scholar
  47. 47.
    S. Ye, H. Akutagawa, K. Uosaki, Y. Sasaki, Inorg. Chem. 34, 4527–4528 (1995)CrossRefGoogle Scholar
  48. 48.
    M. Abe, Y. Sasaki, Y. Yamada, K. Tsukahara, S. Yano, T. Yamaguchi, M. Tominaga, I. Taniguchi, T. Ito, Inorg. Chem. 35, 6724–6734 (1996)CrossRefGoogle Scholar
  49. 49.
    A. Inatomi, M. Abe, Y. Hisaeda, Eur. J. Inorg. Chem. 32, 4830–4836 (2009)CrossRefGoogle Scholar
  50. 50.
    M. Abe, Y. Sasaki, A. Nagasawa, T. Ito, Bull. Chem. Soc. Jpn. 65, 1411–1414 (1992)CrossRefGoogle Scholar
  51. 51.
    K. Meerholz, J. Heinze, Electrochim. Acta 41, 1839–1854 (1996)CrossRefGoogle Scholar
  52. 52.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)Google Scholar
  53. 53.
    M. Abe, Y. Sasaki, Y. Yamada, K. Tsukahara, S. Yano, T. Ito, Inorg. Chem. 34, 4490–4498 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rumiko Matsuse
    • 1
  • Masaaki Abe
    • 1
  • Yuki Tomiyasu
    • 1
  • Atsushi Inatomi
    • 1
  • Hiroaki Yonemura
    • 1
  • Sunao Yamada
    • 1
  • Yoshio Hisaeda
    • 1
    • 2
  1. 1.Department of Chemistry and BiochemistryKyushu UniversityNishi-kuJapan
  2. 2.International Research Center for Molecular Systems (IRCMS)Kyushu UniversityNishi-kuJapan

Personalised recommendations