Advertisement

Photovoltaic Properties and Negative Capacitance Spectroscopy of PCBM:P3HT/FTO Nanostructured Counter Electrode for TiO2-Based DSSC

  • I. S. Yahia
  • Sh. A. Mansour
  • Hoda S. Hafez
  • K. Ocakoglu
  • F. Yakuphanoglu
Article

Abstract

Nano-clusters blind films of phenyl C61-butyric acid methyl ester (PCBM) and poly(3-hexylthiophene) (P3HT) were deposited on fluorine doped tin-oxide (FTO) substrate by spin coating and applied as counter electrodes instead of platinum for a new FTO/TiO2 + K30 dye-sensitized solar cell. The photovoltaic parameters of the fabricated solar cell; open circuit voltage, short circuit current, output power and fill factor, were studied under various light intensities in the range 20:110 mW cm−2. An impedance spectroscopy study was also performed in a wide frequency range (5 kHz–1 MHz) to study the electron transport properties of the solar cells. The capacitance–voltage of the prepared DSSC is characterized by two parts: positive values of capacitance at low frequency range, f ≤ 100 kHz and negative capacitance i.e., an inductive behavior, in higher frequency range f ≥ 300 kHz Conducting polymer electrode based on PCBM:P3HT/FTO can be used as a counter electrode in a DSSC.

Keywords

DSSC PCBM:P3HT K30 dye Photovoltaic properties Impedance spectroscopy Negative capacitance 

Notes

Acknowledgments

The authors (I.S. Yahia and Sh.A. Mansour) are grateful to the SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)–BIDEB for providing them by fellowships to work in Turkey via Research Fellowship Programme for Foreign Citizens.

References

  1. 1.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    G.P. Smestad, Sol. Energy Mater. Sol. Cells 55, 157 (1998)CrossRefGoogle Scholar
  3. 3.
    M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993)CrossRefGoogle Scholar
  4. 4.
    L.M. Peter, Phys. Chem. Chem. Phys. 9, 2630 (2007)CrossRefGoogle Scholar
  5. 5.
    Q. Qin, J. Tao, Y. Yang, X. Dong, Polym. Eng. Sci. 51, 663 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Rodrıguez, M.M. Castillo-Ortega, J.C. Encinas, H. Grijalva, F. Brown, V.M. Sanchez-Corrales, V.M. Castano, J. Appl. Polym. Sci. 111,1216 (2009)Google Scholar
  7. 7.
    J. Han, Y. Liu, R. Guo, J. Polym. Sci., Part A: Polym. Chem. 46, 740 (2008)CrossRefGoogle Scholar
  8. 8.
    N. Papageorgiou, Coord. Chem. Rev. 248, 1421 (2004)CrossRefGoogle Scholar
  9. 9.
    J. Halme, M. Toivola, A. Tolvanen, P. Lund, Sol. Energy Mater. Sol. Cells 90, 872 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, J. Power Sources 181, 172 (2008)CrossRefGoogle Scholar
  11. 11.
    M.J. Panzer, D. Frisbie, Adv. Funct. Mater. 16, 1051 (2006)CrossRefGoogle Scholar
  12. 12.
    L. Chen, L. Yang, M. Shi, H. Chen, Mater. Sol. Cells 94, 2244 (2010)CrossRefGoogle Scholar
  13. 13.
    J.R. MacDonald, Impedance Spectroscopy, Emphasizing Solid Materials and Systems (Wiley, New York, 1987)Google Scholar
  14. 14.
    K. Lee, V. Suryanarayanan, K. Hoa, J. Power Sources 185, 1605 (2008)CrossRefGoogle Scholar
  15. 15.
    H. Hafez, J. Wu, Z. Lan, Q. Li, G. Xie, J. Lin, M. Huang, Y. Huang, M.S. Abdel-Mottaleb, Nanotechnology 21, 415201 (2010)CrossRefGoogle Scholar
  16. 16.
    H. Hafez, M. Saif, M.S.A. Abdel-Mottaleb, J. Power Sources 196, 5792–5796 (2011)Google Scholar
  17. 17.
    K. Ocakoglu, C. Zafer, B. Cetinkaya, S. Icli, Dyes Pigm. 75, 385–394 (2007)CrossRefGoogle Scholar
  18. 18.
    I.S. Yahia, Hoda S. Hafez, F. Yakuphanoglu, B.F. Senkal, M.S. Abdel Mottaleb, Synth. Met. 161, 1299–1305 (2011)Google Scholar
  19. 19.
    D. Kim, Y. Jeong, S. Kim, D. Lee, J. Song, J. Power Sources 149, 112 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Ferber, R. Stangl, J. Luther, J. Sol. Energy Mater. Sol. Cells 53, 29 (1998)CrossRefGoogle Scholar
  21. 21.
    M. Grätzel, J. Photochem. Photobiol. A 164, 3 (2004)CrossRefGoogle Scholar
  22. 22.
    Md. K. Nazeeruddin, E. Baranoff, M. Graetzel, Sol. Energy 85, 1172–1178 (2011)Google Scholar
  23. 23.
    M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003)CrossRefGoogle Scholar
  24. 24.
    J. Wu, Z. Lan, J. Lin, M. Huang, P. Li, J. Power Sources 173, 585 (2007)CrossRefGoogle Scholar
  25. 25.
    K. Hara, H. Arakawa, in Handbook of Photovoltaic Science and Engineering ed. by A. Luque, S. Hegedus (John Wiley, Sussex, 2003), pp.663–700Google Scholar
  26. 26.
    S. Wu, C. Chen, J. Chen, J. Li, Y. Tung, K. Ho, C. Wu, Dyes Pigm. 84, 95 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Ceram. Soc. 92, 289 (2009)CrossRefGoogle Scholar
  28. 28.
    K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, S. Murasawa, J. Electroanal. Chem. 396, 27 (1995)CrossRefGoogle Scholar
  29. 29.
    M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, J. Am. Chem. Soc. 115, 6382 (1993)CrossRefGoogle Scholar
  30. 30.
    A. Hagfeldt, M. Gratzel, Chem. Rev. 95, 49 (1995)CrossRefGoogle Scholar
  31. 31.
    Y. Huang, G. Schlichthörl, A.J. Nozik, M. Grätzel, A.J. Frank, J. Phys. Chem. B 101, 2576 (1997)CrossRefGoogle Scholar
  32. 32.
    A. Kumar, P. Santangelo, N. Lewis, J. Phys. Chem. 96, 834 (1992)CrossRefGoogle Scholar
  33. 33.
    F. El Kamel, P. Gonon, F. Jomni, B. Yangui, Appl. Phys. Lett. 93, 042904 (2008)CrossRefGoogle Scholar
  34. 34.
    G.B. Parravicini, A. Stella, M.C. Ungureanu, R. Kofman, Appl. Phys. Lett. 85, 302 (2004)CrossRefGoogle Scholar
  35. 35.
    A.K. Jonscher, J. Chem. Soc., Faraday Trans. 2, 82, 75 (1986)Google Scholar
  36. 36.
    M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski, A.K. Jonscher, IEEE Trans. Electron Devices 45, 2196 (1998)CrossRefGoogle Scholar
  37. 37.
    X. Wu, E.S. Yang, H.L. Evans, J. Appl. Phys. 68, 2845 (1990)CrossRefGoogle Scholar
  38. 38.
    L.E. Byrum, G. Ariyawansa, R.C. Jayasinghe, N. Dietz, A.G.U. Perera, S.G. Matsik, I.T. Ferguson, A. Bezinger, H.C. Liu, J. Appl. Phys. 106, 053701 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Bisquert, G.G. Belmonte, A. Pitarch, H.J. Bolink, Chem. Phys. Lett. 422, 184 (2006)CrossRefGoogle Scholar
  40. 40.
    F.A. Modine, R.B. Wheeler, Y. Shim, J.F. Cordaro, J. Appl. Phys. 66, 5608 (1989)CrossRefGoogle Scholar
  41. 41.
    F. Lemmi, N.M. Johnson, Appl. Phys. Lett. 74, 251 (1999)CrossRefGoogle Scholar
  42. 42.
    Y.Y. Proskuryakov, K. Durose, B.M. Taele, S. Oelting, J. Appl. Phys. 102, 024504 (2007)CrossRefGoogle Scholar
  43. 43.
    Sh.A. Mansour, F. Yakuphanoglu, Solid State Sci. 14, 121–126 (2012)CrossRefGoogle Scholar
  44. 44.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology (John Willey, New York, 1982)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • I. S. Yahia
    • 1
  • Sh. A. Mansour
    • 2
    • 3
  • Hoda S. Hafez
    • 4
  • K. Ocakoglu
    • 5
  • F. Yakuphanoglu
    • 2
  1. 1.Nano-Science & Semiconductor Labs., Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt
  2. 2.Physics Department, Faculty of ScienceFirat UniversityElazigTurkey
  3. 3.Basic Engineering Science Department, Faculty of EngineeringMenofia UniversityShebin El-KomEgypt
  4. 4.Nano-Photochemistry and its Environmental Applications LaboratoryEnvironmental Studies and Research Institute (ESRI), Menofia UniversitySadat CityEgypt
  5. 5.Advanced Technologies Research & Application CenterMersin UniversityMersinTurkey

Personalised recommendations