Advertisement

Molecular Simulations of Polyphosphazenes for Biomedical Applications

  • Jessica L. Kroger
  • J. R. Fried
Article

Abstract

Properties of four biomedically relevant polyphosphazenes—poly(dichlorophosphazene) (PDCP), poly(glycineethylesterphosphazene) (PGEEP), poly[bis(carboxylatophenoxy)phosphazene] (PCPP) and poly[di(imidazole)phosphazene] (PDIP)—were investigated by molecular dynamics simulations. The densities obtained for these polymers ranged from 1.269 (PGEEP) to 2.174 (crystalline PDCP) g/cm3. As validation of the simulation results, the glass transition temperature of PGEEP was estimated to be 255 K, in agreement with experimental results. Radial distribution functions showed evidence of hydrogen bonding in amorphous PCPP, but little or no hydrogen bonding was observed in the remaining polymers. Hydrogen bonding leads to increased electrostatic interactions in amorphous PCPP, as evidenced by the larger solubility parameter of 19.082 (J/cm3)1/2 obtained for PCPP compared to 14.437, 13.928, and 14.647 (J/cm3)1/2 for amorphous PDCP, PGEEP and PDIP, respectively. Time-correlation functions were calculated for each polymer to determine the relative flexibility of the backbones and side-groups of each polyphosphazene. The backbones and side-groups of both amorphous PDCP and PGEEP show significant flexibility while those of amorphous PCPP and PDIP show more limited motions.

Keywords

Polyphosphazenes Molecular dynamics COMPASS force field 

Notes

Acknowledgments

Acknowledgement is made to the National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) Program in Bio-Applications of Membrane Science and Technology (IGERT #0333377) for financial support of this research.

Supplementary material

10904_2012_9706_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 47 kb)

References

  1. 1.
    H.R. Allcock, R.L. Kugel, J. Am. Chem. Soc. 87, 4216 (1965)CrossRefGoogle Scholar
  2. 2.
    H.R. Allcock, R.L. Kugel, Inorg. Chem. 5, 1716 (1966)CrossRefGoogle Scholar
  3. 3.
    H.R. Allcock, R.L. Kugel, K.J. Valan, Inorg. Chem. 5, 1709 (1966)CrossRefGoogle Scholar
  4. 4.
    H.R. Allcock, Chemistry and Applications of Polyphosphazenes (John Wiley & Sons, Inc, Hoboken, 2003)Google Scholar
  5. 5.
    C.W.J. Grolleman, A.C. de Visser, J.G.C. Wolke, C.P.A.T. Klein, H. van der Goot, H. Timmerman, J. Controlled Release 4, 133 (1986)CrossRefGoogle Scholar
  6. 6.
    C.W.J. Grolleman, A.C. de Visser, J.G.C. Wolke, H. van der Goot, H. Timmerman, J. Controlled Release 3, 143 (1986)CrossRefGoogle Scholar
  7. 7.
    C.W.J. Grolleman, A.C. de Visser, J.G.C. Wolke, H. van der Goot, H. Timmerman, J. Controlled Release 4, 119 (1986)CrossRefGoogle Scholar
  8. 8.
    F.M. Veronese, F. Marsilio, P. Caliceti, P. De Filippis, P. Giunchedi, S. Lora, J. Controlled Release 52, 227 (1998)CrossRefGoogle Scholar
  9. 9.
    P. Caliceti, F.M. Veronese, S. Lora, Int. J. Pharm. 211, 57 (2000)CrossRefGoogle Scholar
  10. 10.
    A. K. Andrianov (ed.), Polyphosphazenes for Biomedical Applications (Wiley, New York, 2009)Google Scholar
  11. 11.
    R.E. Singler, N.S. Schneider, G.L. Hagnauer, Polym. Eng. Sci. 15, 321 (1975)CrossRefGoogle Scholar
  12. 12.
    P. Potin, R. De Jaeger, Eur. Polym. J. 27, 341 (1991)CrossRefGoogle Scholar
  13. 13.
    H.R. Allcock, J. Inorg. Organomet. Polym. 2, 197 (1992)CrossRefGoogle Scholar
  14. 14.
    S. Lakshmi, D.S. Katti, C.T. Laurencin, Adv. Drug Deliv. Rev. 55, 467 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Gleria, R. Bertani, R. De Jaeger, J. Inorg. Organomet. Polym. 14, 1 (2004)CrossRefGoogle Scholar
  16. 16.
    H. Allcock, J. Inorg. Organomet. Polym Mater. 16, 277 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Andrianov, J. Inorg. Organomet. Polym Mater. 16, 397 (2006)CrossRefGoogle Scholar
  18. 18.
    M.P. Tarazona, E. Saiz, Polymer 41, 3337 (2000)CrossRefGoogle Scholar
  19. 19.
    R. Jaeger, G.J. Vancso, Macromol. Theory Simul. 5, 673 (1996)CrossRefGoogle Scholar
  20. 20.
    M.T. Laguna, E. Saiz, M. Tarazona, Polymer 41, 7993 (2000)CrossRefGoogle Scholar
  21. 21.
    R. Caminiti, M. Gleria, K.B. Lipkowitz, G.M. Lombardo, G.C. Pappalardo, J. Am. Chem. Soc. 119, 2196 (1997)CrossRefGoogle Scholar
  22. 22.
    M.E. Amato, A. Grassi, K.B. Lipkowitz, G.M. Lombardo, G.C. Pappalardo, C. Sadun, J. Inorg. Organomet. Polym. 6, 237 (1996)CrossRefGoogle Scholar
  23. 23.
    R. Caminiti, M. Gleria, K.B. Lipkowitz, G.M. Lombardo, G.C. Pappalardo, Chem. Mater. 11, 1492 (1999)CrossRefGoogle Scholar
  24. 24.
    H. Sun, P. Ren, J.R. Fried, Comput. Theor. Polym. Sci. 8, 229 (1998)CrossRefGoogle Scholar
  25. 25.
    J.R. Fried, J. Inorg. Organomet. Polym Mater. 16, 407 (2006)CrossRefGoogle Scholar
  26. 26.
    J.R. Fried, P. Ren, Comput. Theor. Polym. Sci. 9, 111 (1999)CrossRefGoogle Scholar
  27. 27.
    J.R. Fried, P. Ren, Comput. Theor. Polym. Sci. 10, 447 (2000)CrossRefGoogle Scholar
  28. 28.
    N. Hu, J.R. Fried, Polymer 46, 4330 (2005)CrossRefGoogle Scholar
  29. 29.
    H.N. Stokes, Am. Chem. J. 17, 275 (1895)CrossRefGoogle Scholar
  30. 30.
    E. Giglio, F. Pompa, A. Ripamonti, J. Polym. Sci. 59, 293 (1962)CrossRefGoogle Scholar
  31. 31.
    H.R. Allcock, R.J. Best, Can. J. Chem. 42, 447 (1964)CrossRefGoogle Scholar
  32. 32.
    H.R. Allcock, R.A. Arcus, Macromolecules 12, 1130 (1979)CrossRefGoogle Scholar
  33. 33.
    H. Allcock, R. Arcus, E. Stroh, Macromolecules 13, 919 (1980)CrossRefGoogle Scholar
  34. 34.
    K. Tanaka, S. Yamashita, T. Yamabe, Macromolecules 19, 2062 (1986)CrossRefGoogle Scholar
  35. 35.
    A.K. Andrianov, J. Chen, M.P. LeGolvan, Macromolecules 37, 414 (2004)CrossRefGoogle Scholar
  36. 36.
    H. Sun, J. Am. Chem. Soc. 119, 3611 (1997)CrossRefGoogle Scholar
  37. 37.
    H.R. Allcock, T.J. Fuller, D.P. Mack, K. Matsumura, K.M. Smeltz, Macromolecules 10, 824 (1977)CrossRefGoogle Scholar
  38. 38.
    H.R. Allcock, S.R. Pucher, A.G. Scopelianos, Macromolecules 27, 1071 (1994)CrossRefGoogle Scholar
  39. 39.
    H.R. Allcock, S.R. Pucher, A.G. Scopelianos, Biomaterials 15, 563 (1994)CrossRefGoogle Scholar
  40. 40.
    H.R. Allcock, S. Kwon, Macromolecules 22, 75 (1989)CrossRefGoogle Scholar
  41. 41.
    S. Cohen, M.C. Bano, K.B. Visscher, M. Chow, H.R. Allcock, R. Langer, J. Am. Chem. Soc. 112, 7832 (1990)CrossRefGoogle Scholar
  42. 42.
    H.R. Allcock, T.J. Fuller, K. Matsumura, Inorg. Chem. 21, 515 (1982)CrossRefGoogle Scholar
  43. 43.
    A. Grosse-Sommer, R.K. Prud’homme, J. Controlled Release 40, 261 (1996)CrossRefGoogle Scholar
  44. 44.
    F.M. Veronese, F. Marsilio, S. Lora, P. Caliceti, P. Passi, P. Orsolini, Biomaterials 20, 91 (1999)CrossRefGoogle Scholar
  45. 45.
    A.B. Chaplin, J.A. Harrison, P.J. Dyson, Inorg. Chem. 44, 8407 (2005)CrossRefGoogle Scholar
  46. 46.
    M. Calichman, A. Derecskei-Kovacs, C.W. Allen, Inorg. Chem. 46, 2011 (2007)CrossRefGoogle Scholar
  47. 47.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Lui, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople (Gaussian, Inc., Wallingford, CT, 2004)Google Scholar
  48. 48.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)CrossRefGoogle Scholar
  49. 49.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  50. 50.
    A. Beck, J. Chem. Phys. 98, 5648 (1993)Google Scholar
  51. 51.
    H.R. Allcock, N.M. Tollefson, R.A. Arcus, R.R. Whittle, J. Am. Chem. Soc. 107, 5166 (1985)CrossRefGoogle Scholar
  52. 52.
    H. Sun, J. Phys. Chem. B 102, 7338 (1998)CrossRefGoogle Scholar
  53. 53.
    D. Rigby, Fluid Phase Equilib. 217, 77 (2004)CrossRefGoogle Scholar
  54. 54.
    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)CrossRefGoogle Scholar
  55. 55.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)CrossRefGoogle Scholar
  56. 56.
    J. Han, R.H. Gee, R.H. Boyd, Macromolecules 27, 7781 (1994)CrossRefGoogle Scholar
  57. 57.
    R.H. Boyd, Trends Polym. Sci. 4, 12 (1996)Google Scholar
  58. 58.
    J.R. Fried, B. Li, Comput. Theor. Polym. Sci. 11, 273 (2001)CrossRefGoogle Scholar
  59. 59.
    K. Yu, Z. Li, J. Sun, Macromol. Theory Simul. 10, 624 (2001)CrossRefGoogle Scholar
  60. 60.
    A.S. Deazle, I. Hamerton, C.R. Heald, B.J. Howlin, Polym. Int. 41, 151 (1996)CrossRefGoogle Scholar
  61. 61.
    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)CrossRefGoogle Scholar
  62. 62.
    C.F. Fan, T. Çagin, W. Shi, K.A. Smith, Macromol. Theory Simul. 6, 83 (1997)CrossRefGoogle Scholar
  63. 63.
    Y. Chatani, K. Yatsuyanagi, Macromolecules 20, 1042 (1987)CrossRefGoogle Scholar
  64. 64.
    M. Belmares, M. Blanco, W.A. Goddard III, R.B. Ross, G. Caldwell, S.-H. Chou, J. Pham, P.M. Olofson, C. Thomas, J. Comput. Chem. 25, 1814 (2004)CrossRefGoogle Scholar
  65. 65.
    D. Bougeard, C. Bremard, R. De Jaeger, Y. Lemmouchi, J. Phys. Chem. 96, 8850 (1992)CrossRefGoogle Scholar
  66. 66.
    D. Bougeard, C. Bremard, R. De Jaeger, Y. Lemmouchi, Spectrochim. Acta A 49, 199 (1993)CrossRefGoogle Scholar
  67. 67.
    J. Crommen, J. Vandorpe, E. Schacht, J. Controlled Release 24, 167 (1993)CrossRefGoogle Scholar
  68. 68.
    M. Kojima, H. Satake, T. Masuko, J.H. Magill, J. Mater. Sci. Lett. 6, 775 (1987)CrossRefGoogle Scholar
  69. 69.
    R.C. Weast (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1984)Google Scholar
  70. 70.
    J. Karle, L.O. Brockway, J. Am. Chem. Soc. 66, 574 (1944)CrossRefGoogle Scholar
  71. 71.
    L. Pu, Y. Sun, Z. Zhang, J. Phys. Chem. A 113, 6841 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Chemical and Materials EngineeringUniversity of DaytonDaytonUSA

Personalised recommendations