Growth of the Dysprosium–Barium–Copper Oxide Superconductor Nanoclusters in Biopolymer Gels

  • Sima Alikhanzadeh-Arani
  • Masoud Salavati-Niasari
  • Mohammad Almasi-Kashi


Clusters of DyBa2Cu3O7−y high TC type II nanosuperconductor were prepared by sol–gel method in the presence of biopolymer chitosan. At the first step, the precursor and biopolymer were aggregated into amorphous matrix and then hydrogels were formed by thermogelling. Nucleation and growth of discrete nanoparticles is controlled by the biopolymer gel owing to retention of the fibrous nature of the chitosan at high temperatures up to 500 °C. After heating to 900 °C and complete decomposition of BaCO3, nanoparticles of DyBa2Cu3O7−y superconductor with diameter of 10–20 nm in the form of nanoclusters are prepared. Critical temperature (Tc) of the nanoparticles was found to be above 83 K. Characterizations of specimens were performed using scanning electron microscopy and transmission electron microscopy, supported by other techniques including XRD diffraction, energy dispersive X-ray, FT-IR spectrum and magnetic susceptibility measurements.


Nanoclusters Superconductor DyBa2Cu3O7−y Sol–gel Biopolymer 



This work was supported by the University of Kashan and Islamic Azad University (Science and Research Branch of Tehran).


  1. 1.
    L.C. Pathak, S.K. Mishra, Supercond. Sci. Technol. 18, R67–R89 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Pekala, J. Mucha, P. Vanderbemden, R. Cloots, M. Ausloos, Appl. Phys. A 81, 1001–1007 (2005)CrossRefGoogle Scholar
  3. 3.
    E. Ban, Y. Ikebe, Y. Matsuoka, G. Nishijima, K. Watanabe, J. Phys Conf. Ser. 43, 470–473 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Banerjee, V.C. Bagwe, J. John, S.P. Pai, K. Ganesh Kumara, R. Pinto, Physica C 405, 14–24 (2004)CrossRefGoogle Scholar
  5. 5.
    I. Hamadneh, A.M. Rosli, R. Abd-Shukor, N.R.M. Suib, S.Y. Yahya. J. Phys. Conf. Ser. 97, 012063, 1–5 (2008)Google Scholar
  6. 6.
    T. Sato, H. Nakane, S. Yamazaki, N. Mori, S. Hirano, S. Yoshizawa, T. Yamaguchi, Physica C 92–396, 643–647 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Murakami, H. Miyata, R. Hashimoto, K. Katagiri, A. Iwamoto, Physica C 468, 1395–1398 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Murakami, H. Miyata, R. Hashimoto, K. Otaka, K. Katagiri, A. Iwamoto, Physica C 469, 1207–1210 (2009)CrossRefGoogle Scholar
  9. 9.
    A. Murakami, K. Otaka, A. Iwamoto, Physica C 470, 1185–1188 (2010)CrossRefGoogle Scholar
  10. 10.
    H. Kurabayashi, S. Horikoshi, A. Suzuki, M. Ikeda, A. Wongsatanawarid, H. Seki, S. Akiyama, M. Hiragushi, M. Murakami, Physica C 470, 1853–1855 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Nariki, M. Murakami, Supercond. Sci. Technol. 15, 786–790 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Nakashima, J. Shimoyama, Y. Tazaki, Y. Ishii, S. Horii, K. Kishio, Physica C 463–465, 325–329 (2007)CrossRefGoogle Scholar
  13. 13.
    X.L. Xu, J.D. Guo, Y.Z. Wang, A. Sozzi, Physica C 371, 129–132 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Grigoryan, A. Manukyan, A. Hayrapetyan, A. Arzumanyan, A. Kuzanyan, Y. Kafadaryan, E. Vardanyan, Supercond. Sci. Technol. 16, 1202–1206 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Motta, C.V. Deimling, M.J. Saeki, P.N. Lisboa-Filho, J. Sol–Gel Sci. Technol. 46, 201–207 (2008)CrossRefGoogle Scholar
  16. 16.
    Z.A.C. Schnepp, S.C. Wimbush, S. Mann, S.R. Hall, Adv. Mater. 20, 1782–1786 (2008)CrossRefGoogle Scholar
  17. 17.
    E. Lallana, E. Fernandez-Megia, R. Riguera, J. Am. Chem. Soc. 131, 5748–5750 (2009)CrossRefGoogle Scholar
  18. 18.
    S.R. Hall, Adv. Mater. 18, 487–490 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Thierry, P. Kujawa, C. Tkaczyk, F.M. Winnik, L. Bilodeau, M. Tabrizian, J. Am. Chem. Soc. 127, 1626–1627 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27, 3514–3518 (2008)CrossRefGoogle Scholar
  21. 21.
    G. Cardenas, S.P. Miranda, J. Chil. Chem. Soc. 49, 291–295 (2004)Google Scholar
  22. 22.
    H.J. Chung, D.H. Go, J.W. Bae, I.K. Jung, J.W. Lee, K.D. Park, Curr. Appl. Phys. 5, 485–488 (2005)CrossRefGoogle Scholar
  23. 23.
    E.A. El-Hefian, E.S. Elgannoudi, A. Mainal, A.H. Yahaya, Turk. J. Chem. 34, 47–56 (2010)Google Scholar
  24. 24.
    M. Salavati-Niasari, N. Mir, F. Davar, J. Phys. Chem. Solids 70, 847–852 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Salavati-Niasari, A. Sobhani, F. Davar, J. Alloys Compd. 507, 77–83 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Salavati-Niasari, M. Dadkhah, F. Davar, Polyhedron 28, 3005–3009 (2009)CrossRefGoogle Scholar
  27. 27.
    P. Paturi, J. Raittila, H. Huhtinen, IEEE Trans. Appl. Supercond. 13, 3133–3135 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sima Alikhanzadeh-Arani
    • 1
  • Masoud Salavati-Niasari
    • 2
  • Mohammad Almasi-Kashi
    • 3
  1. 1.Department of Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIran
  3. 3.Department of PhysicsUniversity of KashanKashanIran

Personalised recommendations