Synthesis and Structure of Environmentally Friendly Hybrid Clay/Organosilane Nanocomposite Coatings

  • J. O. Iroh
  • Deepika Rajamani


Environmentally friendly polysiloxane and clay/polysiloxane composite coatings were synthesized on aerospace-grade aluminum alloy AA2024-T3 substrates from mildly acidified aqueous solution. The polysiloxane coatings were synthesized by acid-catalyzed hydrolysis and condensation of organosilane coupling agents such as glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) followed by solution drop-casting onto the substrate to form self assembled nanoparticles, coating. The epoxy polysiloxane coating formed by condensation reaction of hydrolyzed TMOS and GPTMS was subsequently cured with aminosilane coupling agent to form cross-linked polysiloxane coating. Clay/polysiloxane coating was formed by dispersing about 0.1–0.3wt% of clay in the hydrolyzed TMOS/GPTMS solution followed by solution casting and the resulting clay/polysiloxane composite coating was subsequently cured with aminosilane coupling agent. The structure and composition of organosilane coupling agents and hybrid polysiloxane coatings were determined by reflection–absorption infrared spectroscopy (RAIR) and X-ray diffraction spectrometry (XRD). The hydrolysis, condensation and curing reactions of TMOS and the organosilane coupling agents were studied by analyzing thin films cast on aluminum alloy substrate after a predetermined reaction time by using RAIR. The XRD results show that the resulting polysiloxanes are semi-crystalline polymers. Wide angle XRD analysis indicated that clay dispersed in clay/polysiloxane composite coating is either highly intercalated or partially exfoliated. This inference was drawn from the disappearance of d001 diffraction peak for clay from the XRD spectrum of clay/polysiloxane coatings cured at 100 °C for 2.5 h.


Organosilane Organoclay Nanocomposite Coatings Hydrolysis Condensation Kinetics 


  1. 1.
    P. Innocenzi, B. Lebeau, J. Mater. Chem. 15, 3821–3831 (2005)CrossRefGoogle Scholar
  2. 2.
    Z. Hongxi, L. Dong, F. Mahmoud, Appl. Phys. Lett. 84, 1064–1066 (2004)CrossRefGoogle Scholar
  3. 3.
    J. Hongjin, Y. Xiaocong, Y. Zhisheng, C.Y. Chuen, L.Y. Loy, Mat. Sci. Eng. 16, 99–102 (2001)CrossRefGoogle Scholar
  4. 4.
    R.A. Weimer, P.M. Lenahan, T.A. Marchione, C.J. Brinker, Appl. Phys. Lett. 51, 1179 (1987)CrossRefGoogle Scholar
  5. 5.
    B.D. Fabes, D.P. Birnie, B.J.J. Zelinski, Thin Solid Films 254, 175–180 (1995)CrossRefGoogle Scholar
  6. 6.
    A.J. Bubendorfer, J. Joubert, T. Kemmitt, L.J. Campbell, N.J. Long, Curr. Appl. Phys. 4, 284–287 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Jergel, A.C. Gallardo, C.F. Guajardo, V. Strbík, Supercond. Sci. Technol. 9, 427–446 (1996)CrossRefGoogle Scholar
  8. 8.
    C.N.R. Rao, R. Nagarajan, R. Vijayaraghaven, Supercond. Sci. Technol. 6, 1–22 (1993)CrossRefGoogle Scholar
  9. 9.
    J. Song, W.J. van Ooij, J. Adhesion, Sci. Technol. 17, 2191 (2004)Google Scholar
  10. 10.
    D. Zhu, W.J. van Ooij, Prog. Org. Coat. 49, 42–53 (2004)CrossRefGoogle Scholar
  11. 11.
    V. Palanivel, D. Zhu, W.J. van Ooij, Prog. Org. Coat. 47, 384–392 (2003)CrossRefGoogle Scholar
  12. 12.
    G. Engelhardt, H. Jancke et al., Chemistry 14, 109 (1974)Google Scholar
  13. 13.
    J. Sefcik, A.V. McCormick, Catal. Today 35, 205–223 (1997)CrossRefGoogle Scholar
  14. 14.
    R.L. Twite, G.P. Bierwagen, Prog. Org. Coat. 33, 91–100 (1998)CrossRefGoogle Scholar
  15. 15.
    M.S. Donley, R.A. Mantz, A.N. Khramov, V.N. Balbyshev, L.S. Kasten, D.J. Gaspar, Prog. Org. Coat. 47, 401–415 (2003)CrossRefGoogle Scholar
  16. 16.
    N.N. Voevodin, V.N. Balbyshevb, M.S. Donley, Prog. Org. Coat. 52, 28–33 (2005)CrossRefGoogle Scholar
  17. 17.
    A.N. Khramov, V.N. Balbyshev, N.N. Voevodin, M.S. Donley, Prog. Org. Coat. 47, 207–213 (2003)CrossRefGoogle Scholar
  18. 18.
    L.S. Kasten, V.N. Balbyshev, M.S. Donley, Prog. Org. Coat. 47, 214–224 (2003)CrossRefGoogle Scholar
  19. 19.
    A. Blumstein, J. Polym. Sci. A 3, 2665–2673 (1965)Google Scholar
  20. 20.
    R. Krishnamoorti, R.A. Vaia, E.P. Giannelis, Chem. Mater. 8, 1728–1734 (1996)CrossRefGoogle Scholar
  21. 21.
    S.S. Ray, M. Okamota, Prog. Polym. Sci. 28, 1539–1641 (2003)CrossRefGoogle Scholar
  22. 22.
    R.P. Andres, S. Datta, D.B. Janes, C.P. Hubiak, R. Reifenberger, H.S. Nalwa (eds.), The Handbook of Nanostructured Materials and Technology (Academic Press, Das Deigo, 1998)Google Scholar
  23. 23.
    F.M. Queiroz, M. Magnani, I. Costa, H.G. de Melo, Corros. Sci. 50, 2646–2657 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Materials Engineering Program, School of Aerospace System, College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA

Personalised recommendations