Advertisement

Polymer Electrolytes Based on Polymeric Ionic Liquid Poly(methyl 2-(3-vinylimidazolidin-1-yl)acetate bis(trifluoromethane sulfonyl)imide)

  • Qiuliang Du
  • Xiangkai Fu
  • Sujuan Liu
  • Lidan Niu
  • Gang Wang
  • Xiaochuan Zou
Article

Abstract

A new kind of ionic liquid monomer methyl 2-(3-vinylimidazolidin-1-yl)acetate bromide (MVIm-Br) and polymeric ionic liquid (PIL), poly(methyl 2-(3-vinylimidazolidin-1-yl)acetate bis(trifluoromethanesulfonyl)imide) (PMVIm-TFSI), were synthesized and characterized. Different compositions of polymer electrolytes were prepared by blending PMVIm-TFSI and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) with poly(methylmethacrylate-co-vinyl acetate) (P(MMA-VAc)). The thermal stability and ionic conductivity improved significantly when PMVIm-TFSI was added into P(MMA-VAc)/LiTFSI polymer. For the polymer electrolytes obtained, the highest ionic conductivity at 30 °C is 4.71 × 10−4 S cm−1 and the corresponding decomposition temperature is ca. 308 °C. Moreover, P(MMA-VAc)/PMVIm-TFSI/LiTFSI electrolyte membrane (transmittance ≥90%) can be used as the ion-conductive layer material for electrochromic devices, which reveal excellent electrochromic performance.

Keywords

Ionic liquid Polymer electrolyte Ionic conductivity Electrochemical properties Electrochromic devices 

Notes

Acknowledgments

All authors herein are grateful to the support from National Ministry of Science and Technology Innovation Fund for High-tech Small and Medium Enterprise Technology (NO.09C26215112399). And National Ministry of Human Resources and Social Security Start-up Support Projects for Students Returned to Business, Office of Human Resources and Social Security Issued 2009 (143).

References

  1. 1.
    D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 14, 589 (1973)CrossRefGoogle Scholar
  2. 2.
    P.V. Wright, Br. Polym. J. 7, 319–327 (1975)CrossRefGoogle Scholar
  3. 3.
    M.A. Susan, T. Kaneko, A. Noda, M. Watanabe, J. Am. Chem. Soc. 127, 4976–4983 (2005)CrossRefGoogle Scholar
  4. 4.
    J.U. Ha, M. Xanthos, Polym. Comp. 30, 534–542 (2009)CrossRefGoogle Scholar
  5. 5.
    S.H. Yeon, K.S. Kim, S. Choi, J.H. Cha, H. Lee, J. Phys. Chem. B 109, 17928–17935 (2005)CrossRefGoogle Scholar
  6. 6.
    B. Rupp, M. Schmuck, A. Balducci, M. Winter, W. Kern, Eur. Polym. J. 44, 2986–2990 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Yoshizawa, W. Ogihara, H. Ohno, Polym. Adv. Technol. 13, 589–594 (2002)CrossRefGoogle Scholar
  8. 8.
    Z.B. Zhou, H. Matsumoto, K. Tatsumi, Chem. Eur. J. 12, 2196–2212 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Tsunashima, M. Sugiya, Electrochem. Commun. 9, 2353–2358 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Caja, T.D.J. Dunstan, D.M. Ryan, V. Katovic, J. Electrochem. Soc. 99–2, 2252 (1999)Google Scholar
  11. 11.
    P.Y. Chen, C.L. Hussey, Electrochim. Acta 52, 1857–1864 (2007)CrossRefGoogle Scholar
  12. 12.
    P. Johansson, S.P. Gejji, J. Tegenfeldt, J. Lindgren, Electrochim. Acta 43, 1375–1379 (1998)CrossRefGoogle Scholar
  13. 13.
    L. Xue, C.W. Padgett, D.D. DesMarteau, W.T. Pennington, Solid State Sci. 4, 1535–1545 (2002)CrossRefGoogle Scholar
  14. 14.
    J.H. Shin, W.A. Henderson, S. Passerini, Electrochem. Commun. 5, 1016–1020 (2003)CrossRefGoogle Scholar
  15. 15.
    E. Marwanta, T. Mizumo, H. Ohno, Solid State Ionics 178, 227–232 (2007)CrossRefGoogle Scholar
  16. 16.
    V. Jovanovski, R. Marcilla, D. Mecerreyes, Macromol. Rapid Commun. 31, 1646–1651 (2010)CrossRefGoogle Scholar
  17. 17.
    J.M.G. Cowie, Polym. Int. 47, 20–27 (1998)CrossRefGoogle Scholar
  18. 18.
    H. Ohno, Macromol. Symp. 249–250, 551–556 (2007)CrossRefGoogle Scholar
  19. 19.
    G.B. Appetecchi, G.T. Kim, M. Montanino, M. Carewska, R. Marcilla, D. Mecerreyes, I.D. Meatza, J. Power Sources 195, 3668–3675 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Mori, M. Yahagi, T. Endo, Macromolecules 42, 8082–8092 (2009)CrossRefGoogle Scholar
  21. 21.
    A.L. Pont, R. Marcilla, I.D. Meatza, H. Grande, D. Mecerreyes, J. Power Sources 188, 558–563 (2009)CrossRefGoogle Scholar
  22. 22.
    D.J. Yang, X.K. Fu, Y.F. Gong, Acta. Chimica. Sinica. 66, 975–979 (2008)Google Scholar
  23. 23.
    J.H. Kim, B.R. Min, J. Won, Y.S. Kang, Chem. Eur. J. 8, 650–654 (2002)CrossRefGoogle Scholar
  24. 24.
    W. Huang, R. Frech, R.A. Wheeler, J. Phys. Chem. 98, 100–110 (1994)CrossRefGoogle Scholar
  25. 25.
    R. Dupon, B.L. Papke, M.A. Ratner, D.F. Shriver, J. Electrochem. Soc. 131, 586–597 (1984)CrossRefGoogle Scholar
  26. 26.
    Z.L. Tang, L. Qi, G.T. Gao, Solid State Ionics 180, 226–230 (2009)CrossRefGoogle Scholar
  27. 27.
    S.Y. Lee, H.H. Yong, Y.J. Lee, S.K. Kim, S. Ahn, J. Phys. Chem. B 109, 13663–13667 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Watanabe, N. Ogata, in Polymer Electrolyte Reviews, vol. 1, ed. by J.R. MacCallum, C.A. Vincent (Elsevier Applied Science, London, 1987), p. 39Google Scholar
  29. 29.
    T. Mizumo, T. Watanabe, N. Matsumi, H. Ohno, Polym. Adv. Technol. 19, 1445–1450 (2008)CrossRefGoogle Scholar
  30. 30.
    E. Verdonck, K. Schaap, L.C. Thomas, Int. J. Pharm. 192, 3–20 (1999)CrossRefGoogle Scholar
  31. 31.
    A. Bakker, S. Gejji, J. Lindgren, K. Hermansson, M.M. Probst, Polymer 36, 4371–4378 (1995)CrossRefGoogle Scholar
  32. 32.
    R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Solid State Ionics 177, 2679–2682 (2006)CrossRefGoogle Scholar
  33. 33.
    A. Takegawa, M.A. Murakami, Y. Kaneko, J.I. Kadokawa, Polym. Comp. 30, 1837–1841 (2009)CrossRefGoogle Scholar
  34. 34.
    W. Ogihara, S. Washiro, H. Nakajima, H. Ohno, Electrochim. Acta 51, 2614–2619 (2006)CrossRefGoogle Scholar
  35. 35.
    K.M. Kim, N.G. Park, K.S. Ryu, S.H. Chang, Polymer 43, 3951–3957 (2002)CrossRefGoogle Scholar
  36. 36.
    R. Marcilla, F. Alcaide, H. Sardon, J.A. Pomposo, C. Pozo-Gonzalo, D. Mecerreyes, J. Electrochem. Soc. 8, 482–488 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Qiuliang Du
    • 1
  • Xiangkai Fu
    • 1
  • Sujuan Liu
    • 1
  • Lidan Niu
    • 1
  • Gang Wang
    • 1
  • Xiaochuan Zou
    • 1
    • 2
  1. 1.The Key Laboratory of Applied Chemistry of Chongqing Municipality. The Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)College of Chemistry and Chemical Engineering, Research Institute of Applied Chemistry Southwest UniversityChongqingPeople’s Republic of China
  2. 2.Department of Biological & Chemical EngineeringChongqing Education CollegeChongqingPeople’s Republic of China

Personalised recommendations