Carbosilane Metallodendrimers with Cyclopentadienyldichlorotitanium(IV) End Groups

  • Alena Krupková
  • Jan Čermák


Dendritic polyols of the second and third generation 2G-OH8 (1), 2G-OH16 (2), and 3G-OH16 (3) were prepared by hydroboration/oxidation of allyl-terminated carbosilane dendrimers and used as supports for the immobilization of cyclopentadienyltrichlorotitanium(IV) complexes via alcoholysis. The reaction of 13 with CpTiCl3 gave metallodendrimers 2G-(OTiCpCl2)8 (4a), 2G-(OTiCpCl2)16 (5a), and 3G-(OTiCpCl2)16 (6a), respectively, whereas the reaction of 1 and 3 with CpSiFTiCl3 (CpSiF = C5H4SiMe2CH2CH2C8F17) yielded peripherally fluorinated metallodendrimers 2G-(OTiCpSiFCl2)8 (4b) and 3G-(OTiCpSiFCl2)16 (6b). All metallodendrimers were characterized by multinuclear NMR spectroscopy. The suggested structures were supported by comparison with model 1-propoxycomplexes 10a,b. To identify side products of the alcoholysis reaction, hydrolytic behavior of the starting trichloro complexes was studied both in solid state and in solution. The main products of hydrolysis in solution were identified as μ-oxocomplexes 8a,b whereas hydrolysis in solid state yielded mainly hydroxycomplexes 7a,b.


Carbosilane dendrimers Cyclopentadienyl ligands Titanium Fluorine-containing ligands Immobilization 



This work was supported by Ministry of Education, Youth and Sport of the Czech Republic (Grant LC06070). We gratefully acknowledge Dr. Jiří Horský and Ms. Zuzana Walterová (Institute of Macromolecular Chemistry of the ASCR, v.v.i.) for the measurement of MALDI-TOF MS.

Supplementary material

10904_2011_9632_MOESM1_ESM.doc (1 mb)
Supplementary material 1 (DOC 1060 kb)


  1. 1.
    P.T. Anastas, T.C. Williamson, ACS Symp. Ser. 626, 1–17 (1996)CrossRefGoogle Scholar
  2. 2.
    R.A. Sheldon, Pure Appl. Chem. 72, 1233–1246 (2000)CrossRefGoogle Scholar
  3. 3.
    C.K.Z. Andrade, L.M. Alves, Curr. Org. Chem. 9, 195–218 (2005)CrossRefGoogle Scholar
  4. 4.
    A. Baiker, Chem. Rev. 99, 453–473 (1999)CrossRefGoogle Scholar
  5. 5.
    P.G. Jessop, T. Ikariya, R. Noyori, Chem. Rev. 99, 475–493 (1999)CrossRefGoogle Scholar
  6. 6.
    B. Subramaniam, C.J. Lyon, V. Arunajatesan, Appl. Catal. B 37, 279–292 (2002)CrossRefGoogle Scholar
  7. 7.
    E.G. Hope, A.M. Stuart, J. Fluorine Chem. 100, 75–83 (1999)CrossRefGoogle Scholar
  8. 8.
    A.P. Dobbs, M.R. Kimberley, J. Fluorine Chem. 118, 3–17 (2002)CrossRefGoogle Scholar
  9. 9.
    M.J. Earle, K.R. Seddon, Pure Appl. Chem. 72, 1391–1398 (2000)CrossRefGoogle Scholar
  10. 10.
    R. Sheldon, Chem. Commun. 239, 9–2407 (2001)Google Scholar
  11. 11.
    D. Zhao, M. Wu, Y. Kou, E. Min, Catal. Today 74, 157–189 (2002)CrossRefGoogle Scholar
  12. 12.
    J.A. Hyatt, J. Org. Chem. 49, 5097–5101 (1984)CrossRefGoogle Scholar
  13. 13.
    C. Janiak, H. Schumann, Adv. Organomet. Chem. 33, 291–393 (1991)CrossRefGoogle Scholar
  14. 14.
    J. Čermák, K. Auerová, H.T.T. Nguyen, V. Blechta, P. Vojtíšek, J. Kvíčala, Collect. Czech. Chem. Commun. 66, 382–396 (2001)CrossRefGoogle Scholar
  15. 15.
    J. Čermák, L. Šťastná, J. Sýkora, I. Císařová, J. Kvíčala, Organometallics 23, 2850–2854 (2004)CrossRefGoogle Scholar
  16. 16.
    L. Červenková Šťastná, K. Auerová, J. Kvíčala, J. Čermák, J. Organomet. Chem. 692, 1974–1982 (2007)CrossRefGoogle Scholar
  17. 17.
    L. Červenková Šťastná, J. Čermák, P. Cuřínová, J. Sýkora, J. Organomet. Chem. 695, 537–545 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Roovers, J. Ding, in Silicon-containing dendritic polymers, ed. by P. Dvornic, M.J. Owen (Springer, Dordrecht, 2009), pp. 31–74CrossRefGoogle Scholar
  19. 19.
    K. Lorenz, H. Frey, B. Stühn, R. Mülhaupt, Macromolecules 30, 6860–6868 (1997)CrossRefGoogle Scholar
  20. 20.
    B. Stark, C. Lach, H. Frey, B. Stühn, Macromol. Symp. 146, 33–39 (1999)CrossRefGoogle Scholar
  21. 21.
    B.A. Omotowa, K.D. Keefer, R.L. Kirchmeier, J.M. Shreeve, J. Am. Chem. Soc. 121, 11130–11138 (1999)CrossRefGoogle Scholar
  22. 22.
    M.A. Casado, S.R. Stobart, J. Roovers, Chem. Commun. 31, 3–314 (2001)Google Scholar
  23. 23.
    S. Arévalo, J.M. Benito, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, J. Organomet. Chem. 602, 208–210 (2000)CrossRefGoogle Scholar
  24. 24.
    S. Arévalo, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, Organometallics 20, 2583–2592 (2001)CrossRefGoogle Scholar
  25. 25.
    A. Krupková, Z. Walterová, J. Horský, J. Čermák, Macromolecules 43, 4511–4519 (2010)CrossRefGoogle Scholar
  26. 26.
    R.D. Gorsich, J. Am. Chem. Soc. 82, 4211–4214 (1960)CrossRefGoogle Scholar
  27. 27.
    P. Gowik, T. Klapötke, J. Pickardt, J. Organomet. Chem. 393, 343–348 (1990)CrossRefGoogle Scholar
  28. 28.
    A.W. van der Made, P.W.N.M. van Leeuwen, J. Chem. Soc. Chem. Commun. 1400–1401 (1992)Google Scholar
  29. 29.
    L.L. Zhou, J. Roovers, Macromolecules 26, 963–968 (1993)CrossRefGoogle Scholar
  30. 30.
    D. Seyferth, D.Y. Son, A.L. Rheingold, R.L. Ostrander, Organometallics 13, 2682–2690 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Chemical Process Fundamentals, v.v.iAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations