Thermoelectric Properties of xPbTe/Yb0.2Co4Sb12 Hot-Pressed Samples

  • Hong Quan Liu
  • Gang Zhou
  • Qiu Sun
  • Yi Jie Gu
  • Xin Bing Zhao


The xPbTe/Yb0.2Co4Sb12 compounds were prepared by the ball-milling and hot-pressed process. Electrical conductivity of the composite samples are reduced with a increase in PbTe content; and, their temperature dependence coefficients show the positive values. The maximum electrical conductivity of composite materials is ~80000 Sm−1 at 800 K. The Seebeck coefficient (absolute value) of the composite material is obviously improved with an increase in the dispersed phase (PbTe) content; the Seebeck coefficient (absolute value) of the 10PbTe sample is ~260 μVK−1 at 700 K, which increases by 13.6% relative to that of the Yb0.2Co4Sb12 sample. The thermal conductivity of the composite samples is improved due to introduction of PbTe, and the thermal conductivity of the 10PbTe sample is ~3 Wm−1 K−1 at 550 K. The maximum value of ZT is 0.78 at 700 K for the 2.5PbTe sample.


Thermoelectric materials Composite Thermoelectric properties Thermal conductivity 



The authors acknowledge support by Natural Science Foundation of China under Grant No. 50801054.


  1. 1.
    E.S. Toberer, A.F. May, G. Jeffrey Snyder, Chem. Mater. 22, 624 (2010)CrossRefGoogle Scholar
  2. 2.
    X. Shi, L.D. Chen, S.Q. Bai et al., J. Appl. Phys. 102, 103709 (2007)CrossRefGoogle Scholar
  3. 3.
    H.Q. Liu, Y. Song, S.N. Zhang, J. Phys. Chem. Solid. 70, 600 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Kleinke, Chem. Mater. 22, 604 (2010)CrossRefGoogle Scholar
  5. 5.
    K.F. Hsu, S. Loo, F. Guo, Science 303, 818 (2004)CrossRefGoogle Scholar
  6. 6.
    G. Slack, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)Google Scholar
  7. 7.
    B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 1325 (1996)CrossRefGoogle Scholar
  8. 8.
    H. Li, X.F. Tang, Q.J. Zhang et al., Appl. Phys. Lett. 93, 252109 (2008)CrossRefGoogle Scholar
  9. 9.
    W.S. Liu, B.P. Zhang, J.F. Li et al., J. Appl. Phys 102, 103717 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Lan, A.J. Minnich, G. Chen et al., Adv. Funct. Mater. 20, 357 (2010)CrossRefGoogle Scholar
  11. 11.
    X.Y. Zhao, X. Shi, L.D. Chen et al., Appl. Phys. Lett. 89, 092121 (2006)CrossRefGoogle Scholar
  12. 12.
    P.C. Zhai, W.Y. Zhao, Y. Li et al., Appl. Phys. Lett. 89, 052111 (2006)CrossRefGoogle Scholar
  13. 13.
    Y.Q. Cao, T.J. Zhu, X.B. Zhao, J. Alloys Compd. 449, 109 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Yang, Q. Hao, H. Wang et al., Phys. Rev. B80, 115329 (2009)Google Scholar
  15. 15.
    Z. Xiong, X.H. Chen, X.Y. Huang et al., Acta Mater. 58, 3995 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Martin, L. Wang, L. Chen et al., Phys. Rev. B79, 115311 (2009)Google Scholar
  17. 17.
    J.P. Heremans, V. Jovovic, E.S. Toberer et al., Science 321, 554 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hong Quan Liu
    • 1
  • Gang Zhou
    • 2
  • Qiu Sun
    • 3
  • Yi Jie Gu
    • 1
  • Xin Bing Zhao
    • 4
  1. 1.College of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.Key Laboratory of Mine Disaster Prevent ion and ControlShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  3. 3.Department of Applied ChemistryHarbin Institute of TechnologyHarbinPeople’s Republic of China
  4. 4.Department of Materials Science, State Key Laboratory of Silicon MaterialsZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations