Facile Solvothermal Synthesis Ni(OH)2 Nanostructure for Electrochemical Capacitors

  • Liangyu Gong
  • Xiaohong Liu
  • Linghao Su


Nickel hydroxide nanosheets were successfully synthesized by facile solvothermal method without any template. The structure and morphology of the as-prepared sample were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The observations revealed the formation of hexagonal phase β-Ni(OH)2 nanosheets with an average diameter of about 100–120 nm. Electrochemical studies were carried out using cyclic voltammetry and galvanostatic charge–discharge tests, respectively. A maximum specific capacitance of 2,342 F g−1, which is the highest reported for a β-Ni(OH)2 electrode, could be achieved in 6 mol L−1 KOH electrolyte within the potential range of 0–0.50 V (vs. SCE) for the obtained β-Ni(OH)2 electrode at 0.4 A g−1, suggesting its potential application in the electrode material for electrochemical capacitors.


Solvothermal method Ni(OH)2 Nanosheets Electrochemical property 



The work was financially supported by the Natural Science Foundation of China (30871894) and the Outstanding Young Scientists Incentive foundation of Shandong Province (BS2010NJ007).


  1. 1.
    J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 142, 2699 (1995)CrossRefGoogle Scholar
  2. 2.
    L. Wang, X.H. Liu, X. Wang, X.J. Yang, L.D. Lu, Curr. Appl. Phys. 10, 1422 (2010)CrossRefGoogle Scholar
  3. 3.
    C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao, L.F. Shen, J. Mater. Chem. 19, 5772 (2009)CrossRefGoogle Scholar
  4. 4.
    R.R. Jiang, T. Huang, J.L. Liu, J.H. Zhuang, A.S. Yu, Electrochim. Acta 54, 3047 (2009)CrossRefGoogle Scholar
  5. 5.
    D.D. Zhao, S.J. Bao, W.J. Zhou, H.L. Li, Electrochem. Commun. 9, 869 (2007)CrossRefGoogle Scholar
  6. 6.
    Z.J. YU, Y. Dai, W. Chen, Adv. Mater. Res. 421, 79 (2009)Google Scholar
  7. 7.
    J.W. Liang, L.B. Kong, W.J. Wu, M. Liu, Y.C. Luo, L. Kang, J. Solid State Electrochem. 13, 333 (2009)CrossRefGoogle Scholar
  8. 8.
    G.X. Hu, C.X. Li, H. Gong, J. Power Sources 195, 6977 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, L.B. Kong, J.J. Cai, H. Li, Y.C. Luo, L. Kang, Micropor. Mesopor. Mater. 132, 154 (2010)CrossRefGoogle Scholar
  10. 10.
    J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, J. Mater. Sci. 44, 4466 (2009)CrossRefGoogle Scholar
  11. 11.
    G.W. Yang, C.L. Xiu, H.L. Li, Chem. Commun. 48, 6537 (2008)CrossRefGoogle Scholar
  12. 12.
    Y.M. Li, W.Y. Li, S.L. Chou, J. Chen, J. Alloys Compd. 456, 339 (2008)CrossRefGoogle Scholar
  13. 13.
    U.M. Patil, K.V. Gurava, V.J. Fulari, C.D. Lokhandea, Oh Shim Joo, J. Power Sources 188, 338 (2009)CrossRefGoogle Scholar
  14. 14.
    S.B. Kulkarni, V.S. Jamadade, D.S. Dhawale, C.D. Lokhande, Appl. Surf. Sci. 255, 8390 (2009)CrossRefGoogle Scholar
  15. 15.
    Q.H. Huang, X.Y. Wang, J. Li, C.L. Dai, S. Gamboa, P.J. Sebastian, J. Power Sources 164, 425 (2007)CrossRefGoogle Scholar
  16. 16.
    X.M. Ni, Q.B. Zhao, B.B. Li, J. Cheng, H.G. Zheng, Solid State Commun. 137, 585 (2006)CrossRefGoogle Scholar
  17. 17.
    L.X. Yang, Y.J. Zhu, H. Tong, Z.H. Liang, L. Li, L. Zhang, J. Solid State Chem. 180, 2095 (2007)CrossRefGoogle Scholar
  18. 18.
    Enbo Shangguan, Z.R. Chang, H.W. Tang, X.Z. Yuan, H.J. Wang, Int. J. Hydrogen Energy 35, 9716 (2010)CrossRefGoogle Scholar
  19. 19.
    T.N. Ramesh, R.S. Jayashree, R.S. Jayashree, P. Vishnu Kamath, J. Electrochem. Soc. 150, A520 (2003)CrossRefGoogle Scholar
  20. 20.
    R. Yang, L. Gao, J. Colloid Interface Sci. 297, 134 (2006)CrossRefGoogle Scholar
  21. 21.
    Y.W. Li, J.H. Yao, C.J. Liu, W.M. Zhao, W.X. Deng, S.K. Zhong, Int. J. Hydrogen Energy 35, 2539 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdaoPeople’s Republic of China

Personalised recommendations