Effect of PbTe on Thermoelectric Properties of Co0.88Ni0.12Sb2.91Sn0.09

  • HongQuan Liu
  • Gang Zhou
  • FeiXiang Hao
  • YiJie Gu
  • XinBing Zhao


The Co0.88Ni0.12Sb2.91Sn0.09 compound was synthesized by a metallurgical route, and PbTe powder was prepared by the low-temperature aqueous chemical method. Composite materials (xPbTe/Co0.88Ni0.12Sb2.91Sn0.09) were prepared by the ball-milling and the hot-pressed process. Electrical conductivities of xPbTe/Co0.88Ni0.12Sb2.91Sn0.09 hot-pressed samples decrease with increase of PbTe content, but their thermal conductivities were effectively improved due to induction of disperse phase. Due to agglomeration of the disperse phase, little thermal conductivity improvement occurs for composite material with low PbTe content. The ZT values of xPbTe/Co0.88Ni0.12Sb2.91Sn0.09 samples were hardly enhanced due to the negative contribution of electrical conductivity.


Thermoelectric materials Composite material Thermoelectric properties Thermal conductivity 



The authors acknowledge support by Natural Science Foundation of China under Grant No. 50801054.


  1. 1.
    W. Huey Steele, Science 10, 256 (1893)CrossRefGoogle Scholar
  2. 2.
    Q.Y. He, S.J. Hu, X.G. Tang et al., Appl. Phys. Lett. 93, 042108 (2008)CrossRefGoogle Scholar
  3. 3.
    H. Kitagawa, Mat. Res. Bull. 35, 185 (2000)CrossRefGoogle Scholar
  4. 4.
    W.S. Liu, B.P. Zhang, J.F. Li et al., J. Appl. Phys 102, 103717 (2007)CrossRefGoogle Scholar
  5. 5.
    X. Shi, H. Kong, C.P. Li et al., Appl. Phys. Lett. 92, 182101 (2008)CrossRefGoogle Scholar
  6. 6.
    X.F. Tang, Q.J. Zhang, L.D. Chen et al., J. Appl. Phys 97, 093712 (2005)CrossRefGoogle Scholar
  7. 7.
    P.N. Alboni, X.H. Ji, J. He et al., J. Appl. Phys 103, 113707 (2008)CrossRefGoogle Scholar
  8. 8.
    S.G. Jeffrey, E.S. Toberer, Nat. Mater. 7, 105 (2008)CrossRefGoogle Scholar
  9. 9.
    J.L. Mi, T.J. Zhu, X.B. Zhao, J. Appl. Phys 101, 054314 (2007)CrossRefGoogle Scholar
  10. 10.
    B.C. Sales, D. Mandrus, B.C. Chakoumakos et al., Phys. Rev. B 56, 15081 (1997)CrossRefGoogle Scholar
  11. 11.
    X.Y. Zhao, X. Shi, L.D. Chen et al., Appl. Phys. Lett. 89, 092121 (2006)CrossRefGoogle Scholar
  12. 12.
    P.C. Zhai, W.Y. Zhao, Y. Li et al., Appl. Phys. Lett. 89, 052111 (2006)CrossRefGoogle Scholar
  13. 13.
    Y.Q. Cao, T.J. Zhu, X.B. Zhao, J Alloys Compd. 449, 109 (2008)CrossRefGoogle Scholar
  14. 14.
    R. Landauer, AIP conference proceedings, vol 40. (American Institute of Physics, New York, 1978)Google Scholar
  15. 15.
    L. Wang, D.G. Wang, G.M. Zhu, Mater. Lett. 65, 1086 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • HongQuan Liu
    • 1
  • Gang Zhou
    • 2
  • FeiXiang Hao
    • 1
  • YiJie Gu
    • 1
  • XinBing Zhao
    • 3
  1. 1.College of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.Key Laboratory of Mine Disaster Prevent ion and ControlShandong University of Science and TechnologyQingdaoPeople’s Republic of China
  3. 3.Department of Materials Science, State Key Laboratory of Silicon MaterialsZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations