Synthesis and Characterization of Lanthanum Zirconate Nanocrystals Doped with Iron Ions by a Salt-Assistant Combustion Method

  • Yunshan Bai
  • Lude Lu
  • Jianchun Bao


Nanocrystalline (La x Fe1−x )2Zr2O7 series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results showed the La ion can be partially replaced by Fe ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials. The catalytic property of (La x Fe1−x )2Zr2O7 can be measured by the change of catalytic degradation rate of Methyl orange. The results show that the catalytic property of La x Fe2−x Zr2O7 is significant, and it has good application prospects as photocatalyst.


Soft chemistry (LaxFe1−x)2Zr2O7 Nanocrystalline Pyrochlore Catalytic property 



This investigation was supported by the National Natural Science Foundation of China and China Academy of Engineering Physics (No. 10776014), the Science and Technology Supporting Item of Jiangsu Province, China (No. BE2009159).


  1. 1.
    M. Uno, A. Kosuga, M. Okui, K. Horisaka, H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 420, 291 (2006)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, R.L. Withers, L. Noren, J. Solid State Chem. 177, 4404 (2004)CrossRefGoogle Scholar
  3. 3.
    H.C. Gupta, S. Brown, J. Phys. Chem. Solids. 64, 2205 (2003)CrossRefGoogle Scholar
  4. 4.
    Y. Tong, J. Zhu, L. Lu, X. Wang, X. Yang, J. Alloys Compd. 465, 280 (2008)CrossRefGoogle Scholar
  5. 5.
    L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)CrossRefGoogle Scholar
  6. 6.
    Y. Matsumura, M. Yoshinaka, K. Hirota, Solid State Commun. 104, 341 (1997)CrossRefGoogle Scholar
  7. 7.
    Y. Tong, L. Lu, X. Yang, X. Wang, Solid State Sci. 10, 1379 (2008)CrossRefGoogle Scholar
  8. 8.
    Y. Tong, Y. Wang, Z. Yu, X. Wang, X. Yang, L. Lu, Mater. Lett. 62, 889 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Ting, C. Chang, L. Chuang, C. Li, Y. Chiu, Thin Solid Films 518, 5704 (2010)CrossRefGoogle Scholar
  10. 10.
    D. Chen, R. Xu, Mater. Res. Bull. 33, 409 (1998)CrossRefGoogle Scholar
  11. 11.
    L. Gerward, J.Z. Jiang, J.S. Olsen, J.M. Recio, A. Waskowska, J. Alloys Compd. 401, 11 (2005)CrossRefGoogle Scholar
  12. 12.
    K.K. Rao, T. Banu, M. Vithal, G.Y.S.K. Swamy, K.R. Kumar, Mater. Lett. 54, 205 (2002)CrossRefGoogle Scholar
  13. 13.
    P. Ciambelli, S. Cimino, S.D. Rossi, M. Faticanti, L. Lisi, G. Minelli, I. Pettiti, P. Porta, G. Russo, M. Turco, App. Catal. B: Environ. 24, 243 (2000)CrossRefGoogle Scholar
  14. 14.
    J. Zhu, H. Chen, Y. Hao, X. Yang, L. Lu, X. Wang, J. Mater. Sci. Eng. 22, 333 (2004)Google Scholar
  15. 15.
    J. Zhu, W. Zhang, Z. Wang, X. Yang, L. Lu, X. Wang, Chin. J. Inorg. Chem. 20, 863 (2004)Google Scholar
  16. 16.
    Z. Ma, F. Li, A. Chen, H. Bai, Acta Chim. Sinica. 62, 1252 (2004)Google Scholar
  17. 17.
    K. Li, T. Zhang, H. Wang, H. Yan, J. Solid State Chem. 179, 1029 (2006)CrossRefGoogle Scholar
  18. 18.
    H. Dai, H. He, P. Li, X. Zi, J. Chin. Rare Earth Soc. 21, 1 (2003)Google Scholar
  19. 19.
    H. Falcón, M.J. Martinez-Lope, J.A. Alonso, J.L.G. Fierro, Appl. Catal. B: Environ. 26, 131 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjingChina
  2. 2.Institute of Applied ChemistryYancheng Institute of TechnologyYanchengChina

Personalised recommendations