Advertisement

Two Tartrate-Pillared Coordination Polymers: Hydrothermal Preparation, Crystal Structures, Spectroscopic and Thermal Analyses of {[M2(μ-C4H4O6)2(H2O)] · 3H2O} (M = Mn, Cd)

  • Masoumeh Tabatabaee
  • Atefeh Gholamighavamabad
  • Elaheh Khabiri
  • Masood Parvez
Article

Abstract

Two novel three-dimensional coordination polymers, formulated as {[M2(μ-C4H4O6)2(H2O)] · 3H2O} (M = Mn for 1 and Cd for 2), have been synthesized under hydrothermal reaction condition. Both complexes were characterized by elemental analysis and IR spectroscopy. Their molecular and crystal structures were determined by X-ray crystal structure analysis and their thermal stability by TGA-DTA methods. Compound 1 crystallizes in the monoclinic space group, P21, while compound 2 crystallizes the orthorhombic space group, P212121. The structures are self-assembled from bifunctional tartrate and water molecules. Tartrate ligands in 1 and 2 contribute to both covalent and hydrogen bonds. Polymeric chains of 1 and 2 are composed of M(II) ions bridged by tartrate ions in O,O′ fashion. The asymmetric units of coordination polymers contain two metal centers having different coordination environments.

Keywords

Coordination polymer l-tartaric acid Cadmium complex Manganese complex Crystal structure 

Notes

Acknowledgments

This research was supported by Yazd Branch, Islamic Azad University, Yazd, Iran.

References

  1. 1.
    X. Lin, C. Yun-Xia, Z. Ji-Min, Chinese J. Struct. Chem. 25, 1250 (2006)Google Scholar
  2. 2.
    Y.H. Wen, J.K. Cheng, Y.L. Feng, J. Zhang, Z.J. Li, Y.G. Yao, Inorg. Chim. Acta 358, 3347 (2005)CrossRefGoogle Scholar
  3. 3.
    H.D. Yin, F.H. Li, C.H. Wang, Inorg. Chim. Acta 360, 2797 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Yin, S.X. Liu, Polyhedron 26, 3103 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Thirumurugan, S. Natarajan, Eur. J. Inorg. Chem. 762 (2004)Google Scholar
  6. 6.
    J.C. Yao, W. Huang, B. Li, S. Gou, Y. Xu, Inorg. Chem. Commun. 5, 711 (2002)CrossRefGoogle Scholar
  7. 7.
    X.M. Zhang, M.L. Tong, M.L. Gong, X.M. Chen, Eur. J. Inorg. Chem. 138 (2003)Google Scholar
  8. 8.
    H. Li, C.E. Davis, F.L. Croy, D.G. Kelley, O.M. Yaghi, J. Am. Chem. Soc. 120, 2186 (1998)CrossRefGoogle Scholar
  9. 9.
    L.L. Johnston, J.H. Nettleman, M.A. Braverman, L.K. Sposato, R.M. Supkowski, R.L. LaDuca, Polyhedron 29, 303 (2010)CrossRefGoogle Scholar
  10. 10.
    Y.-Q. Zheng, X.-Y. Han, H.-L. Zhu, Polyhedron 29, 911 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Tabatabaee, V. Razavimahmoudabadi, B.-M. Kukovec, M. Ghassemzadeh, B. Neumüller, J. Inorg. Organomet. Polym. doi: 10.1007/s10904-011-9462-1
  12. 12.
    C. Xie, B. Zhang, X. Wang, R. Wang, G. Shen, D. Shen, J. Chem. Crystallogr. 37, 25 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Tabatabaee, M.A. Sharif, F. Vakili, S. Saheli, J. Rare. Earth. 27, 356 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Semerci, O.Z. Yeşilel, E. Şahin, J. Inorg. Organomet. Polym. 20, 334 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.-Q. Zheng, J.-L. Lin, Z.-P. Kong, Inorg. Chem. 43, 2590 (2004)CrossRefGoogle Scholar
  16. 16.
    Y.-Q. Zheng, D.-Y. Cheng, J.-L. Lin, Z.-F. Li, X.-W. Wang, Eur. J. Inorg. Chem. 17, 4453 (2008)CrossRefGoogle Scholar
  17. 17.
    Y.-Q. Zheng, H.-Z. Xie, J. Solid State Chem. 177, 1352 (2004)CrossRefGoogle Scholar
  18. 18.
    M.M. Petit-Ramel, C.M. Blance, J. Inorg. Nucl. Chem. 34, 1241 (1972)CrossRefGoogle Scholar
  19. 19.
    V. Baliukiené, A. Surviliené, A. Survila, Chemija 12, 216 (2001)Google Scholar
  20. 20.
    S.C. Manna, E. Zangrando, J. Ribasc, N.R. Chaudhuri, Polyhedron 25, 1779 (2006)CrossRefGoogle Scholar
  21. 21.
    H. Guo, Q. Liu, L. Yang, W. Weng, Q. Wanga, C. Zheng, Inorg. Chem. Commun. 11, 859 (2008)CrossRefGoogle Scholar
  22. 22.
    F. Jian, P. Zhao, Q. Wang, J. Coor. Chem. 58, 1133 (2005)CrossRefGoogle Scholar
  23. 23.
    M. Athar, G. Li, Z. Shi, Y. Chen, S. Feng, Solid State Sci. 10, 1853 (2008)CrossRefGoogle Scholar
  24. 24.
    Z. Otwinowski, W. Minor, Methods Enzymol. 276, 307 (1997)CrossRefGoogle Scholar
  25. 25.
    R. Hooft, COLLECT (Nonius BV, Delft, The Netherlands, 1998)Google Scholar
  26. 26.
    A. Altomare, M. Cascarano, C. Giacovazzo, A. Guagliardi, SIR92. J. Appl. Cryst. 26, 343 (1993)Google Scholar
  27. 27.
    P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, R. de Gelder, R. Israel, J.M.M. Smits, The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The NetherlandsGoogle Scholar
  28. 28.
    G.M. Sheldrick, Acta Cryst. A64, 112 (2008)Google Scholar
  29. 29.
    L.J. Farrugia, J. Appl. Cryst. 30, 565 (1997)Google Scholar
  30. 30.
    C. Ge, Z. Zhao, G. Han, X. Zhang, Acta Cryst. E64, m36 (2008)Google Scholar
  31. 31.
    R.G. Xiong, C.M. Liu, J.L. Zuo, H.Z. Li, X.Z. You, H.K. Fun, K. Sivakumar, Polyhedron 16, 2315 (1997)CrossRefGoogle Scholar
  32. 32.
    M. Tabatabaee, B.-M. Kukovec, M. Kazeroonizadeh, Polyhedron 30, 1114 (2011)CrossRefGoogle Scholar
  33. 33.
    H. Aghabozorg, E. Sadr-khanlou, A. Shokrollahi, M. Ghaedi, M. Shamsipur, J. Iran. Chem. Soc. 6, 55 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Masoumeh Tabatabaee
    • 1
  • Atefeh Gholamighavamabad
    • 1
  • Elaheh Khabiri
    • 1
  • Masood Parvez
    • 2
  1. 1.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran
  2. 2.Department of ChemistryThe University of CalgaryCalgaryCanada

Personalised recommendations