Skip to main content
Log in

Ethylene Vinyl Acetate and Polycaprolactone–Organoclay Nanocomposite: Thermal, Mechanical and Morphological Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Organoclay of the type Cloisite® 20A (C-20A) with two structurally different but semicrystalline polymer matrices was studied. Polycaprolactone (PCL), a linear, biodegradable polymer, and ethylene vinyl acetate (EVA), a branched copolymer, were chosen to prepare polymer clay nanocomposites via the melt-blending method. The results show that the structure of a polymer matrix plays a significant role towards compatibilization with the silicate layers of the clay. Scanning electron microscopy and X-ray diffraction analyses revealed an exfoliated-intercalated mixed morphology for the PCL matrix. However, for the EVA matrix, silicate layers agglomerated to form tactoids and resulted primarily in an intercalated morphology. Fourier transform infrared spectroscopy was used to determine the nature of the interactions between the polymer and the filler. The thermal properties were investigated using thermogravimetric analysis and indicated that, with an increase in clay loading, the thermal stability was reduced for both matrices. Tensile tests suggested that Young’s modulus improved for the EVA matrix with an increase in clay dosage whereas for PCL the modulus was found to be highest for 8% clay loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.L. Lee, C. Zeng, X. Cia, X. Han, J. Shen, G. Xu, Compos. Sci. Technol. 65, 2344–2363 (2005)

    Article  CAS  Google Scholar 

  2. J. Fan-Long, R. Kyong-Yop, P. Soo-Jin, Mater. Sci. Eng. Part A 429433, 435–436 (2006)

    Google Scholar 

  3. C. Dai, P. Li, J. Yeh, Eur. Polym. J. 44, 2439–2447 (2008)

    Article  CAS  Google Scholar 

  4. J. Yeh, T. Kuo, H. Huang, K. Chang, M. Chang, J. Yang, Eur. Polym. J. 43, 1624–1634 (2007)

    Article  CAS  Google Scholar 

  5. A. Ladhari, H.B. Daly, H. Belhadjsalah, K.C. Cole, J. Denault, Polym. Degrad. Stab. 95, 1–11 (2010)

    Article  Google Scholar 

  6. R.M.G. Rajapakse, K. Kurakami, H.M.N. Bandara, R.M.M.Y. Rajapakse, K. Velauthamurti, S. Wijeratne, Electrochim. Acta 55(7), 2490–2497 (2010)

    Article  CAS  Google Scholar 

  7. M. Lai, K. Chang, J. Yeh, S. Liou, M. Hsieh, H. Chang, Eur. Polym. J. 43, 4219–4228 (2007)

    Article  CAS  Google Scholar 

  8. B. Alexandre, D. Langevin, P. Mederic, T. Aubry, H. Counderc, Q.T. Nguyen, A. Saiter, S. Marais, J. Memb. Sci. 328, 186–204 (2009)

    Article  CAS  Google Scholar 

  9. A. Rehab, N. Salahuddin, Mater. Sci. Eng. Part A 399, 368–376 (2005)

    Article  Google Scholar 

  10. Y. Ke-ke, W. Xiu-Li, W. Yu-Zhong, J. Ind. Eng. Chem. 13(4), 485–500 (2007)

    Google Scholar 

  11. J.K. Pandey, K.R. Reddy, A.P. Kumar, R.P. Singh, Polym. Degrad. Stab. 88, 234–250 (2005)

    Article  CAS  Google Scholar 

  12. K.A. Moly, H.J. Radusch, R. Androsh, S.S. Bhagawan, S. Thomas, Eur. Polym. J. 41, 1410–1419 (2005)

    Article  CAS  Google Scholar 

  13. D.S. Chaudhary, R. Prasad, R.K. Gupta, S.N. Bhattacharya, Thermochim. Acta 433, 187–195 (2005)

    Article  CAS  Google Scholar 

  14. W. Yaming, M.A. Rodriguez-Perez, L.R. Rui, F.M. Joa˜o, Macromol. Mater. Eng. 290, 792–801 (2005)

    Article  Google Scholar 

  15. S.R. Chowdhury, J.K. Mishra, C.K. Das, Polym. Degrad. Stab. 70, 199–204 (2000)

    Article  CAS  Google Scholar 

  16. A.S. Marcos, Polym. Degrad. Stab. 92, 986–996 (2007)

    Article  Google Scholar 

  17. X. Zheng, C.A. Wilkie, Polym. Degrad. Stab. 81, 539–550 (2003)

    Article  CAS  Google Scholar 

  18. P. Kiliaris, C.D. Papaspyrides, Prog. Polym. Sci. 35, 902–958 (2010)

    Article  CAS  Google Scholar 

  19. S.W. Benson, P.S. Nogia, Acc. Chem. Res. 12, 228–233 (1979)

    Article  Google Scholar 

  20. R.B. Ahmad, K. Mehrdad, H.N.F. Mohammad, H.B. Mohammad, J Hazard. Mater. 150, 136–145 (2008)

    Article  Google Scholar 

  21. T.R. Hull, D. Price, Y. Liu, C.L. Wills, J. Brady, Polym. Degrad. Stab. 82, 365–371 (2003)

    Article  CAS  Google Scholar 

  22. W. Tongfei, X. Tingxiu, Y. Guisheng, Appl. Clay Sci. 45, 105–110 (2009)

    Article  Google Scholar 

  23. S. Bourbigot, J.W. Gilman, C.A. Wilkie, Polym. Degrad. Stab. 84, 483–492 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Research Foundation (NRF), University of Johannesburg (UJ) and the DST/Mintek Nanotechnology Innovation Centre (NIC) are gratefully acknowledged for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dlamini, D.S., Mishra, S.B., Mishra, A.K. et al. Ethylene Vinyl Acetate and Polycaprolactone–Organoclay Nanocomposite: Thermal, Mechanical and Morphological Properties. J Inorg Organomet Polym 21, 229–236 (2011). https://doi.org/10.1007/s10904-011-9460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-011-9460-3

Keywords

Navigation