Ethylene Vinyl Acetate and Polycaprolactone–Organoclay Nanocomposite: Thermal, Mechanical and Morphological Properties

  • D. S. Dlamini
  • S. B. Mishra
  • A. K. Mishra
  • B. B. Mamba


Organoclay of the type Cloisite® 20A (C-20A) with two structurally different but semicrystalline polymer matrices was studied. Polycaprolactone (PCL), a linear, biodegradable polymer, and ethylene vinyl acetate (EVA), a branched copolymer, were chosen to prepare polymer clay nanocomposites via the melt-blending method. The results show that the structure of a polymer matrix plays a significant role towards compatibilization with the silicate layers of the clay. Scanning electron microscopy and X-ray diffraction analyses revealed an exfoliated-intercalated mixed morphology for the PCL matrix. However, for the EVA matrix, silicate layers agglomerated to form tactoids and resulted primarily in an intercalated morphology. Fourier transform infrared spectroscopy was used to determine the nature of the interactions between the polymer and the filler. The thermal properties were investigated using thermogravimetric analysis and indicated that, with an increase in clay loading, the thermal stability was reduced for both matrices. Tensile tests suggested that Young’s modulus improved for the EVA matrix with an increase in clay dosage whereas for PCL the modulus was found to be highest for 8% clay loading.


Organoclay Morphology Thermal properties Mechanical properties C-20A Nanocomposite Dispersion Polycaprolactone Ethylene vinyl acetate 



The National Research Foundation (NRF), University of Johannesburg (UJ) and the DST/Mintek Nanotechnology Innovation Centre (NIC) are gratefully acknowledged for funding this project.


  1. 1.
    J.L. Lee, C. Zeng, X. Cia, X. Han, J. Shen, G. Xu, Compos. Sci. Technol. 65, 2344–2363 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Fan-Long, R. Kyong-Yop, P. Soo-Jin, Mater. Sci. Eng. Part A 429433, 435–436 (2006)Google Scholar
  3. 3.
    C. Dai, P. Li, J. Yeh, Eur. Polym. J. 44, 2439–2447 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Yeh, T. Kuo, H. Huang, K. Chang, M. Chang, J. Yang, Eur. Polym. J. 43, 1624–1634 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Ladhari, H.B. Daly, H. Belhadjsalah, K.C. Cole, J. Denault, Polym. Degrad. Stab. 95, 1–11 (2010)CrossRefGoogle Scholar
  6. 6.
    R.M.G. Rajapakse, K. Kurakami, H.M.N. Bandara, R.M.M.Y. Rajapakse, K. Velauthamurti, S. Wijeratne, Electrochim. Acta 55(7), 2490–2497 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Lai, K. Chang, J. Yeh, S. Liou, M. Hsieh, H. Chang, Eur. Polym. J. 43, 4219–4228 (2007)CrossRefGoogle Scholar
  8. 8.
    B. Alexandre, D. Langevin, P. Mederic, T. Aubry, H. Counderc, Q.T. Nguyen, A. Saiter, S. Marais, J. Memb. Sci. 328, 186–204 (2009)CrossRefGoogle Scholar
  9. 9.
    A. Rehab, N. Salahuddin, Mater. Sci. Eng. Part A 399, 368–376 (2005)CrossRefGoogle Scholar
  10. 10.
    Y. Ke-ke, W. Xiu-Li, W. Yu-Zhong, J. Ind. Eng. Chem. 13(4), 485–500 (2007)Google Scholar
  11. 11.
    J.K. Pandey, K.R. Reddy, A.P. Kumar, R.P. Singh, Polym. Degrad. Stab. 88, 234–250 (2005)CrossRefGoogle Scholar
  12. 12.
    K.A. Moly, H.J. Radusch, R. Androsh, S.S. Bhagawan, S. Thomas, Eur. Polym. J. 41, 1410–1419 (2005)CrossRefGoogle Scholar
  13. 13.
    D.S. Chaudhary, R. Prasad, R.K. Gupta, S.N. Bhattacharya, Thermochim. Acta 433, 187–195 (2005)CrossRefGoogle Scholar
  14. 14.
    W. Yaming, M.A. Rodriguez-Perez, L.R. Rui, F.M. Joa˜o, Macromol. Mater. Eng. 290, 792–801 (2005)CrossRefGoogle Scholar
  15. 15.
    S.R. Chowdhury, J.K. Mishra, C.K. Das, Polym. Degrad. Stab. 70, 199–204 (2000)CrossRefGoogle Scholar
  16. 16.
    A.S. Marcos, Polym. Degrad. Stab. 92, 986–996 (2007)CrossRefGoogle Scholar
  17. 17.
    X. Zheng, C.A. Wilkie, Polym. Degrad. Stab. 81, 539–550 (2003)CrossRefGoogle Scholar
  18. 18.
    P. Kiliaris, C.D. Papaspyrides, Prog. Polym. Sci. 35, 902–958 (2010)CrossRefGoogle Scholar
  19. 19.
    S.W. Benson, P.S. Nogia, Acc. Chem. Res. 12, 228–233 (1979)CrossRefGoogle Scholar
  20. 20.
    R.B. Ahmad, K. Mehrdad, H.N.F. Mohammad, H.B. Mohammad, J Hazard. Mater. 150, 136–145 (2008)CrossRefGoogle Scholar
  21. 21.
    T.R. Hull, D. Price, Y. Liu, C.L. Wills, J. Brady, Polym. Degrad. Stab. 82, 365–371 (2003)CrossRefGoogle Scholar
  22. 22.
    W. Tongfei, X. Tingxiu, Y. Guisheng, Appl. Clay Sci. 45, 105–110 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Bourbigot, J.W. Gilman, C.A. Wilkie, Polym. Degrad. Stab. 84, 483–492 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • D. S. Dlamini
    • 1
  • S. B. Mishra
    • 1
  • A. K. Mishra
    • 2
  • B. B. Mamba
    • 1
  1. 1.Department of Chemical TechnologyUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.UJ Nanomaterials Science Research Group, Department of Chemical TechnologyUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations