Advertisement

Synthesis and Characterization of Poly[bis(resorcinol monobenzoate) phosphazenes] and Poly[bis(resorcinol monobenzoate diethylamino) phosphazenes] and Their Self Assembly Behaviors

  • Abid M. Amin
  • Li Wang
  • Jianjun Wang
  • Wael A. Amer
  • Jia Huo
  • Haojie Yu
  • Jingmin Gao
Article

Abstract

Poly[bis(resorcinol monobenzoate)phosphazenes] (PRMBP) and poly[bis(resorcinol monoben- zoate diethylamino)phosphazenes] (PRMBDEAP) were synthesized in two steps. In the first step, polydichlorophosphazenes (PDCP) were synthesized from hexachlorocyclotriphosphazenes (HCCP) via ring opening polymerization in the presence of AlCl3 as a catalyst. In the second step, the chlorine atoms in PDCP were replaced with resorcinol monobenzoate and (or) diethylamine in a macromolecular substitution reaction. The structures of the polymers were elucidated by 1H NMR, 31P NMR, and GPC. In addition, the self assembly behaviors of PRMBP and PRMBDEAP were investigated in different solvent using optical microscopy and SEM techniques. The SEM images showed that PRMBDEAP self assembled into star-like dendrimers comprising of open ended tubular arms.

Keywords

Polyphosphazenes Synthesis Characterization Self Assembly 

References

  1. 1.
    J.X. Zhang, L.Y. Qiu, K.J. Zhu, Y. Jin, Macromol. Rapid Commun. 25, 1563–1567 (2004)CrossRefGoogle Scholar
  2. 2.
    A. Harada, K. Kataoka, Prog. Polym. Sci. 31, 949–982 (2006)CrossRefGoogle Scholar
  3. 3.
    A.M. Amin, L. Wang, J. Wang, H. Yu, J. Huo, J. Gao, A. Xiao, Design. Monom. Polym. 12, 357–375 (2009)CrossRefGoogle Scholar
  4. 4.
    H. R. Allcock, Chemistry and Applications of Polyphosphazenes, Chapters 4 and 5 (Wiley- Interscience, New York, 2003)Google Scholar
  5. 5.
    H.R. Allcock, Science 255, 1106–1112 (1992)CrossRefGoogle Scholar
  6. 6.
    G. Riess, Prog. Polym. Sci. 28, 1107–1170 (2003)CrossRefGoogle Scholar
  7. 7.
    S. Ibim, A. Ambrosio, D. Larrier, H.R. Allcock, C.T. Laurencin, J. Control Release 40, 31–39 (1996)CrossRefGoogle Scholar
  8. 8.
    H.R. Allcock, S.Y. Cho, L.B. Steely, Macromolecules 39, 8334–8338 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Yu, A. Eisenberg, Macromolecules 29, 6359–6361 (1996)CrossRefGoogle Scholar
  10. 10.
    H.R. Allcock, Curr. Opin. Sol. Stat. Mater. Sci. 10, 231–240 (2006)CrossRefGoogle Scholar
  11. 11.
    H.R. Allcock, J. Inorg. Organomet. Polym. Mater. 16, 277–294 (2006)CrossRefGoogle Scholar
  12. 12.
    K.A. Alexander, C. Jianping, P.L. Mark, Macromolecules 37, 414–420 (2004)CrossRefGoogle Scholar
  13. 13.
    Mario Gleria, Roger De Jaeger, J. Inorg. Organomet. Polym. 11, 1–45 (2001)CrossRefGoogle Scholar
  14. 14.
    M.D. Bohdana, W. You-Yeon, S.E. David, C.-M. James Lee, S.B. Frank, E.D. Dennis, A.H. Daniel, Science 284, 1143–1146 (1999)CrossRefGoogle Scholar
  15. 15.
    A.J. Samson, X.L. Chen, Science 283, 372–375 (1999)CrossRefGoogle Scholar
  16. 16.
    S.S. Youn, H.C. Yang, B. Hyounggee, J. Ok-Sang, Macromolecules 28, 7566–7568 (1995)CrossRefGoogle Scholar
  17. 17.
    C. Nardin, M. Widmer, M. Winterhalter, M. Meier, Eur. Phys. J. E 4, 403–410 (2001)CrossRefGoogle Scholar
  18. 18.
    H.R. Allcock, A. Singh, A.M.A. Ambrosio, W.R. Laredo, Biomacromolecules 4, 1646–1653 (2003)CrossRefGoogle Scholar
  19. 19.
    N.R. Krogman, A. Singh, L.S. Nair, C.T. Laurencin, H.R. Allcock, Biomacromolecules 8, 1306–1312 (2007)CrossRefGoogle Scholar
  20. 20.
    J.X. Zhang, L.Y. Qiu, Y. Jin, K.J. Zhu, Macromolecules 39, 451–455 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Ding, L. Wang, H. Yu, J. Huo, Q. Liu, A. Xiao, J. Phys. Chem. C 113, 5126–5132 (2009)CrossRefGoogle Scholar
  22. 22.
    J.X. Zhang, L.Y. Qiu, Y. Jin, K.J. Zhu, Coll. Surf. B. 43, 123–130 (2005)CrossRefGoogle Scholar
  23. 23.
    N.R. Krogman, A.L. Weikel, K.A. Kristhart, S.P. Nukavarapu, M. Deng, L.S. Nair, C.T. Laurencin, H.R. Allcock, Biomaterials 30, 3035–3041 (2009)CrossRefGoogle Scholar
  24. 24.
    L.Y. Qiu, M.Q. Yan, Acta Biomater. 5, 2132–2141 (2009)CrossRefGoogle Scholar
  25. 25.
    C. Zheng, L. Qiu, K. Zhu, Polymer 50, 1173–1177 (2009)CrossRefGoogle Scholar
  26. 26.
    A.L. Weikel, N.R. Krogman, N.Q. Nguyen, L.S. Nair, C.T. Laurencin, H.R. Allcock, Macromolecules 42, 636–639 (2009)CrossRefGoogle Scholar
  27. 27.
    W. Yuan, L. Zhu, X. Huang, S. Zheng, X. Tang, Polym. Degrad. Stab. 87, 503–509 (2005)CrossRefGoogle Scholar
  28. 28.
    C.W. Allen, J. Inorg Organomet. Polym. Mater. 17, 341–348 (2007)CrossRefGoogle Scholar
  29. 29.
    C. Diaz, M.L. Valenzuela, J. Inorg. Organomet. Polym. Mater. 16, 419–435 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Shuki, H. Satoshi, K. Yoshikazu, N. Masatoshi, H. Tsunehisa, Beilstein J. Organic Chemistry 5(8), 1–6 (2009)Google Scholar
  31. 31.
    J. Kang, J. H. Shin, Synthesis of trans-1,1,1-trichloro-4-N,N-diethylamino-3-buten- 2-one: C-H activation of triethylamine by hexachloroacetone. The First Annual QCC Honors Conference, April 15 (2005)Google Scholar
  32. 32.
    M.M. Taqui khan, S.B. Halli Gudi, S.H.R. Abdi, J. Mol Catal 48, 325–333 (1988)CrossRefGoogle Scholar
  33. 33.
    A. Kellett Matthew, G. Whitten David, J. Am. Chem. Soc. 113, 358–359 (1991)CrossRefGoogle Scholar
  34. 34.
    T. Ryuichi, I. Miller Sidney, J. Org. Chem. 56(25), 3561–3856 (1971)Google Scholar
  35. 35.
    G. Young William, I.D. Webb, L. Goering Harlan, JACS 73(3), 1076–1083 (1951)CrossRefGoogle Scholar
  36. 36.
    D.S. Feyter, D.F.C. Schryver, J. Phys. Chem. B 109, 4290–4302 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Abid M. Amin
    • 1
  • Li Wang
    • 1
  • Jianjun Wang
    • 1
  • Wael A. Amer
    • 1
  • Jia Huo
    • 1
  • Haojie Yu
    • 1
  • Jingmin Gao
    • 1
  1. 1.State Key Laboratory of Chemical Engineering, Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations